Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effect of remote sea surface temperature change on tropical cyclone potential intensity


The response of tropical cyclone activity to global warming is widely debated1,2,3,4,5,6,7,8,9,10. It is often assumed that warmer sea surface temperatures provide a more favourable environment for the development and intensification of tropical cyclones, but cyclone genesis and intensity are also affected by the vertical thermodynamic properties of the atmosphere1,10,11,12,13. Here we use climate models and observational reconstructions to explore the relationship between changes in sea surface temperature and tropical cyclone ‘potential intensity’—a measure that provides an upper bound on cyclone intensity10,11,12,13,14 and can also reflect the likelihood of cyclone development15,16. We find that changes in local sea surface temperature are inadequate for characterizing even the sign of changes in potential intensity, but that long-term changes in potential intensity are closely related to the regional structure of warming; regions that warm more than the tropical average are characterized by increased potential intensity, and vice versa. We use this relationship to reconstruct changes in potential intensity over the twentieth century from observational reconstructions of sea surface temperature. We find that, even though tropical Atlantic sea surface temperatures are currently at a historical high, Atlantic potential intensity probably peaked in the 1930s and 1950s, and recent values are near the historical average. Our results indicate that—per unit local sea surface temperature change—the response of tropical cyclone activity to natural climate variations, which tend to involve localized changes in sea surface temperature, may be larger than the response to the more uniform patterns of greenhouse-gas-induced warming.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spatial structure of model-projected changes in SST and PI for the twenty-first century.
Figure 2: Time series of June–November change in SST and PI.
Figure 3: Century-scale trends in SST and an estimate for PI.
Figure 4: Anomalies in SST and estimated PI since the late nineteenth century.


  1. Shen, W., Tuleya, R. E. & Ginis, I. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Clim. 13, 109–121 (2000)

    Article  ADS  Google Scholar 

  2. Goldenberg, S. B., Landsea, C., Mestas-Nunez, A. M. & Gray, W. M. The recent increase in Atlantic hurricane activity. Science 293, 474–479 (2001)

    CAS  Article  ADS  Google Scholar 

  3. Knutson, T. R. & Tuleya, R. E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim. 17, 3477–3495 (2004)

    Article  ADS  Google Scholar 

  4. Emanuel, K. A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005)

    CAS  Article  ADS  Google Scholar 

  5. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H.-R. Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309, 1844–1846 (2005)

    CAS  Article  ADS  Google Scholar 

  6. Zhang, R. & Delworth, T. L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. 33 L17712 doi: 10.1029/2006GL026267 (2006)

    Article  ADS  Google Scholar 

  7. Knutson, T. R., Sirutis, J. J., Garner, S. T., Held, I. M. & Tuleya, R. E. Simulation of the recent multi-decadal increase of Atlantic hurricane activity using an 18-km grid regional model. Bull. Am. Meteorol. Soc. 88 (10). 1549–1565 (2007)

    Article  ADS  Google Scholar 

  8. Latif, M., Keenlyside, N. & Bader, J. Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett. 34 L01710 10.1029/2006GL027969 (2007)

    Article  ADS  Google Scholar 

  9. Vecchi, G. A. & Soden, B. J. Increased tropical atlantic wind shear in model projections of global warming. Geophys. Res. Lett. 34 L08702 doi: 10.1029/2006GL028905 (2007)

    CAS  Article  ADS  Google Scholar 

  10. Emanuel, K. A. Environmental factors affecting tropical cyclone power dissipation. J. Clim. (in the press)

  11. Bister, M. & Emanuel, K. A. Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys. 65 233–240 doi: 10.1007/BF01030791 (1998)

    Article  ADS  Google Scholar 

  12. Bister, M. & Emanuel, K. A. Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res. 107 4801 10.1029/2001JD000776 (2002)

    Article  Google Scholar 

  13. Holland, G. J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci. 54, 2519–2541 (1997)

    Article  ADS  Google Scholar 

  14. Emanuel, K. A statistical analysis of tropical cyclone intensity. Mon. Weath. Rev. 128, 1139–1152 (2000)

    Article  ADS  Google Scholar 

  15. Emanuel, K. A. & Nolan, D. S. Tropical cyclones and the global climate system. In 26th Conf. Hurricanes and Tropical Meteorology (American Meteorological Society, Miami, 2004). 〈

  16. Camargo, S. J., Emanuel, K. A. & Sobel, A. H. Use of genesis potential index to diagnose ENSO effects upon tropical cyclone genesis. J. Clim. 20, 4819–4834 (2007)

    Article  ADS  Google Scholar 

  17. Elsner, J. B., Tsonis, A. A. & Jagger, T. H. High-frequency variability in hurricane power dissipation and its relationship to global temperature. Bull. Am. Meteorol. Soc. 87, 763–768 (2006)

    Article  ADS  Google Scholar 

  18. Sobel, A. H., Held, I. M. & Bretherton, C. S. The ENSO signal in tropical tropospheric temperature. J. Clim. 15, 2702–2706 (2002)

    Article  ADS  Google Scholar 

  19. Tang, B. H. & Neelin, J. D. ENSO Influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett. 31 L24204 doi: 10.1029/2004GL021072 (2004)

    Article  ADS  Google Scholar 

  20. Uppala, S. M. et al. The ERA-40 reanalysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005)

    Article  ADS  Google Scholar 

  21. Kalnay, E. et al. The NMC/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996)

    Article  ADS  Google Scholar 

  22. Smith, T. M. & Reynolds, R. W. Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Clim. 16, 1495–1510 (2003)

    Article  ADS  Google Scholar 

  23. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108 10.1029/2002JD002670 (2003)

  24. Kaplan, A. et al. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. 103, 18567–18589 (1998)

    Article  ADS  Google Scholar 

  25. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007)

    Article  ADS  Google Scholar 

  26. Liu, Z., Vavrus, S., He, F., Wen, N. & Zhong, Y. Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Clim. 18, 4684–4700 (2005)

    Article  ADS  Google Scholar 

  27. Vimont, D. J. & Kossin, J. P. The Atlantic Meridional Mode and hurricane activity. Geophys. Res. Lett. 34 L07709 doi: 10.1029/2007GL029683 (2007)

    Article  ADS  Google Scholar 

  28. Wang, C., Enfield, D. B., Lee, S.-K. & Landsea, C. W. Influences of the Atlantic warm pool on western hemisphere summer rainfall and Atlantic hurricanes. J. Clim. 19, 3011–3028 (2006)

    Article  ADS  Google Scholar 

  29. Broccoli, A. Tropical cooling at the Last Glacial Maximum: An atmosphere–mixed layer ocean model simulation. J. Clim. 13, 951–976 (2000)

    Article  ADS  Google Scholar 

  30. CLIMAP Project Members. The last interglacial ocean. Quat. Res. 21, 123–224 (1984)

  31. Gualdi, S., Scoccimarro, E., Bellucci, A., Grezio, A., Manzini, E. & Navarra, A. The main features of the 20th century climate as simulated with the SGX coupled GCM. Claris News 4, 7–13 (2006)

    Google Scholar 

  32. Gordon, H. B. et al. The CSIRO Mk3 Climate System Model. Tech. Report 60 (CSIRO Atmospheric Research, Aspendale, Victoria, 2002)

    Google Scholar 

Download references


We acknowledge the various modelling groups for providing their data, and PCMDI and the IPCC Data Archive at LLNL/DOE for collecting, archiving and making the data readily available. We thank T. Delworth, K. Dixon, S. Garner, D. E. Harrison, I. Held, A. E. Johansson, T. Knutson, R. Stouffer, A. Wittenberg, S. Ilcane and A. Laperra for discussion, and K. Emanuel for comments. This work was partially supported by NASA and NOAA-OGP.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gabriel A. Vecchi.

Supplementary information

Supplementary Information

The file contains Supplementary Notes with additional references and Supplementary Figures 1-6 with Legends. (PDF 7263 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vecchi, G., Soden, B. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450, 1066–1070 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing