Enhanced thermoelectric performance of rough silicon nanowires


Approximately 90 per cent of the world’s power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30–40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent1. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2–4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20–300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structural characterization of the rough silicon nanowires.
Figure 2: Thermal conductivity of the rough silicon nanowires.
Figure 3: Thermoelectric properties and ZT calculation for the rough silicon nanowire.


  1. 1

    Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 303, 777–778 (2004)

    CAS  Article  Google Scholar 

  2. 2

    Hsu, K. F. et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Touloukian, Y. S., Powell, R. W., Ho, C. Y. & Klemens, P. G. Thermal Conductivity: Metallic Elements and Alloys, Thermophysical Properties of Matter Vol. 1 339 (IFI/Plenum, New York, 1970)

    Google Scholar 

  6. 6

    Weber, L. & Gmelin, E. Transport properties of silicon. Appl. Phys. A 53, 136–140 (1991)

    ADS  Article  Google Scholar 

  7. 7

    Nolas, G. S., Sharp, J. & Goldsmid, H. J. in Thermoelectrics: Basic Principles and New Materials Development (eds Nolas, G. S., Sharp, J. & Goldsmid, H. J.) Ch. 3 (Springer, Berlin, 2001)

    Google Scholar 

  8. 8

    Asheghi, M., Leung, Y. K., Wong, S. S. & Goodson, K. E. Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71, 1798–1800 (1997)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Asheghi, M., Touzelbaev, M. N., Goodson, K. E., Leung, Y. K. & Wong, S. S. Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Transf. 120, 30–36 (1998)

    CAS  Article  Google Scholar 

  10. 10

    Ju, Y. S. & Goodson, K. E. Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74, 3005–3007 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Peng, K. Q., Yan, Y. J., Gao, S. P. & Zhu, J. Synthesis of large-area silicon nanowire arrays via self-assembling nanochemistry. Adv. Mater. 14, 1164–1167 (2002)

    CAS  Article  Google Scholar 

  12. 12

    Peng, K., Yan, Y., Gao, S. & Zhu, J. Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv. Funct. Mater. 13, 127–132 (2003)

    CAS  Article  Google Scholar 

  13. 13

    Peng, K. et al. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Intl Edn. 44, 2737–2742 (2005)

    CAS  Article  Google Scholar 

  14. 14

    Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Hochbaum, A. I., Fan, R., He, R. & Yang, P. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457–460 (2005)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Ashcroft, N. W. & Mermin, N. D. Solid State Physics Chs 1, 2 and 13 (Saunders College Publishing, Fort Worth, 1976)

    Google Scholar 

  17. 17

    Sze, S. M. Physics of Semiconductor Devices Ch. 1 (John Wiley & Sons, New York, 1981)

    Google Scholar 

  18. 18

    Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 125, 881–888 (2003)

    CAS  Article  Google Scholar 

  19. 19

    Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006)

    ADS  Article  Google Scholar 

  20. 20

    Zou, J. & Balandin, A. Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932–2938 (2001)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Saha, S., Shi, L. & Prasher, R. Monte Carlo simulation of phonon backscattering in a nanowire. Proc. ASME Int. Mech. Eng. Congr. Exp. (5–10 November 2006) art. no. 15668 1–5 (ASME, Chicago, 2006)

    Google Scholar 

  22. 22

    Rowe, D. M. CRC Handbook of Thermoelectrics Ch. 5 (CRC Press, Boca Raton, 1995)

    Google Scholar 

  23. 23

    Brinson, M. E. & Dunstan, W. Thermal conductivity and thermoelectric power of heavily doped n-type silicon. J. Phys. C 3, 483–491 (1970)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Ruf, T. et al. Thermal conductivity of isotopically enriched silicon. Solid State Commun. 115, 243–247 (2000)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Cahill, D. G. & Pohl, R. O. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35, 4067–4073 (1987)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992)

    CAS  Article  Google Scholar 

  27. 27

    Mingo, N., Yang, L., Li, D. & Majumdar, A. Predicting the thermal conductivity of Si and Ge nanowires. Nano Lett. 3, 1713–1716 (2003)

    ADS  CAS  Article  Google Scholar 

Download references


We thank T.-J. King-Liu and C. Hu for discussions and J. Goldberger for TEM analysis. We acknowledge the support of the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE. A.I.H. and R.C. thank the NSF-IGERT and ITRI-Taiwan programs, respectively, for fellowship support. We also thank the National Center for Electron Microscopy and the UC Berkeley Microlab for the use of their facilities. R.D.D. thanks the GenCat/Fulbright programme for support.

Author information



Corresponding authors

Correspondence to Arun Majumdar or Peidong Yang.

Supplementary information

Supplementary Information

The file contains Supplementary Methods and Discussion; and Supplementary Figures S1-S4 with Legends. (PDF 442 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hochbaum, A., Chen, R., Delgado, R. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008). https://doi.org/10.1038/nature06381

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing