Electron pockets in the Fermi surface of hole-doped high-Tc superconductors


High-temperature superconductivity in copper oxides occurs when the materials are chemically tuned to have a carrier concentration intermediate between their metallic state at high doping and their insulating state at zero doping. The underlying evolution of the electron system in the absence of superconductivity is still unclear, and a question of central importance is whether it involves any intermediate phase with broken symmetry1. The Fermi surface of the electronic states in the underdoped ‘YBCO’ materials YBa2Cu3Oy and YBa2Cu4O8 was recently shown to include small pockets2,3,4, in contrast with the large cylinder that characterizes the overdoped regime5, pointing to a topological change in the Fermi surface. Here we report the observation of a negative Hall resistance in the magnetic-field-induced normal state of YBa2Cu3Oy and YBa2Cu4O8, which reveals that these pockets are electron-like rather than hole-like. We propose that these electron pockets most probably arise from a reconstruction of the Fermi surface caused by the onset of a density-wave phase, as is thought to occur in the electron-doped copper oxides near the onset of antiferromagnetic order6,7. Comparison with materials of the La2CuO4 family that exhibit spin/charge density-wave order8,9,10,11 suggests that a Fermi surface reconstruction also occurs in those materials, pointing to a generic property of high-transition-temperature (Tc) superconductors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Hall resistance of LBCO and YBCO.
Figure 2: Hall coefficient versus magnetic field.
Figure 3: Normal-state Hall coefficient versus temperature.


  1. 1

    Julian, S. R. & Norman, M. R. Local pairs and small surfaces. Nature 447, 537–539 (2007)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-T c superconductor. Nature 447, 565–568 (2007)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Yelland, E. A. et al. Quantum oscillations in the underdoped cuprate YBa2Cu4O8 . Preprint at 〈http://arXiv.org/abs/0707.0057〉 (2007)

  4. 4

    Bangura, A. F. et al. Shubnikov-de Haas oscillations in YBa2Cu4O8 . Preprint at 〈http://arXiv.org/abs/0707.4461〉 (2007)

  5. 5

    Hussey, N. E. et al. Observation of a coherent three-dimensional Fermi surface in a high-transition temperature superconductor. Nature 425, 814–817 (2003)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Li, P., Balakirev, F. F. & Greene, R. L. High-field Hall resistivity and magneto-resistance in electron-doped Pr2-xCexCuO4-δ . Phys. Rev. Lett. 99, 047003 (2007)

    ADS  Article  Google Scholar 

  7. 7

    Lin, J. & Millis, A. J. Theory of low-temperature Hall effect in electron-doped cuprates. Phys. Rev. B 72, 214506 (2005)

    ADS  Article  Google Scholar 

  8. 8

    Tranquada, J. M. et al. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995)

    ADS  Article  Google Scholar 

  9. 9

    Ichikawa, N. et al. Local magnetic order vs superconductivity in a layered cuprate. Phys. Rev. Lett. 85, 1738–1741 (2000)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Noda, T., Eisaki, H. & Uchida, S. Evidence for one-dimensional charge transport in La2-y-xNdySrxCuO4 . Science 286, 265–268 (1999)

    CAS  Article  Google Scholar 

  11. 11

    Adachi, T., Noji, T. & Koike, Y. Crystal growth, transport properties, and crystal structure of the single-crystal La2-xBaxCuO4 (x = 0.11). Phys. Rev. B 64, 144524 (2001)

    ADS  Article  Google Scholar 

  12. 12

    Harris, J. M. et al. Hall angle evidence for the superclean regime in 60-K YBa2Cu3O6+y . Phys. Rev. Lett. 73, 1711–1714 (1994)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Ito, T., Takenaka, K. & Uchida, S. Systematic deviation from T-linear behavior in the in-plane resistivity of YBa2Cu3O7-y: evidence for dominant spin scattering. Phys. Rev. Lett. 70, 3995–3998 (1993)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Wang, Y. & Ong, N. P. Particle-hole symmetry in the antiferromagnetic state of the cuprates. Proc. Natl Acad. Sci. USA 98, 11091–11096 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Segawa, K. & Ando, Y. Intrinsic Hall response of the CuO2 planes in a chain-plane composite system of YBa2Cu3Oy . Phys. Rev. B 69, 104521 (2004)

    ADS  Article  Google Scholar 

  16. 16

    Ong, N. P. Geometric interpretation of the weak-field Hall conductivity in two-dimensional metals with arbitrary Fermi surface. Phys. Rev. B 43, 193–201 (1991)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Ashcroft, N. W. The reversal of Hall fields in aluminium and indium. Phys. Kondens. Mater. 9, 45–53 (1969)

    ADS  Google Scholar 

  18. 18

    Huntley, D. J. & Frindt, R. F. Transport properties of NbSe2 . Can. J. Phys. 52, 861–867 (1974)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Chen, W.-Q., Yang, K.-Y., Rice, T. M. & Zhang, F.-C. Quantum oscillations in magnetic-field-induced antiferromagnetic phase of underdoped cuprates: application to ortho-II YBa2Cu3O6. 5 . Preprint at 〈http://arXiv.org/abs/0706.3556〉 (2007)

  20. 20

    Balakirev, F. F. et al. Signature of optimal doping in Hall-effect measurements on a high-temperature superconductor. Nature 424, 912–915 (2003)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Balakirev, F. F. et al. Magneto-transport in LSCO high-T c superconducting thin films. N. J. Phys. 8, 194 (2006)

    Article  Google Scholar 

  22. 22

    Horii, S. et al. On the dimensionality of the Cu-O double-chain site of PrBa2Cu4O8 . Phys. Rev. B 66, 054530 (2002)

    ADS  Article  Google Scholar 

  23. 23

    Baumberger, F. et al. Nested Fermi surface and electronic instability in Ca3Ru2O7 . Phys. Rev. Lett. 96, 107601 (2006)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Chakravarty, S. et al. Sharp signature of a d x2-y2 quantum critical point in the Hall coefficient of cuprate superconductors. Phys. Rev. Lett. 89, 277003 (2002)

    Article  Google Scholar 

  25. 25

    Millis, A. J. & Norman, M. R. Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates. Preprint at 〈http://arXiv.org/abs/0709.0106〉 (2007)

  26. 26

    Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Hücker, M. et al. Consequences of stripe order for the transport properties of rare earth doped La2-xSrxCuO4 . J. Phys. Chem. Solids 59, 1821–1824 (1998)

    ADS  Article  Google Scholar 

  29. 29

    Adachi, S. et al. Preparation of YBa2Cu4O8 single crystals in Y2O3 crucible using O2 –HIP apparatus. Physica C 301, 123–128 (1998)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Liang, R., Bonn, D. A. & Hardy, W. N. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505 (2006)

    ADS  Article  Google Scholar 

Download references


We thank N. W. Ashcroft, K. Behnia, L. Brisson, S. Chakravarty, J. C. Davis, R. L. Greene, S. A. Kivelson, G. G. Lonzarich, M. R. Norman, A. J. Schofield, A.-M. S. Tremblay and D. Vignolle for discussions, and J. Corbin and M. Nardone for their help with the experiments. We acknowledge support from the Canadian Institute for Advanced Research, the LNCMP and the NHMFL, and funding from the NSERC, the FQRNT, the EPSRC and a Canada Research Chair. Part of this work was supported by the French ANR IceNET and EuroMagNET. The NHMFL is supported by an NSF grant and the State of Florida.

Author Contributions D.L. and N.D.-L. contributed equally to this work.

Author information



Corresponding authors

Correspondence to Cyril Proust or Louis Taillefer.

Supplementary information

Supplementary Information

The file contains Supplementary Notes with additional references and Supplementary Figures S1-S5 with Legends. (PDF 2594 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

LeBoeuf, D., Doiron-Leyraud, N., Levallois, J. et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533–536 (2007). https://doi.org/10.1038/nature06332

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing