Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria

Abstract

The short-chain hydrocarbons ethane, propane and butane are constituents of natural gas. They are usually assumed to be of thermochemical origin1, but biological formation of ethane and propane has been also observed2. Microbial utilization of short-chain hydrocarbons has been shown in some aerobic species3,4 but not in anaerobic species of bacteria. On the other hand, anaerobic utilization of short-chain hydrocarbons would in principle be expected because various anaerobic bacteria grow with higher homologues (≥C6)5. Indeed, chemical analyses of hydrocarbon-rich habitats with limited or no access of oxygen indicated in situ biodegradation of short-chain hydrocarbons6,7,8,9,10. Here we report the enrichment of sulphate-reducing bacteria (SRB) with such capacity from marine hydrocarbon seep areas. Propane or n-butane as the sole growth substrate led to sediment-free sulphate-reducing enrichment cultures growing at 12, 28 or 60 °C. With ethane, a slower enrichment with residual sediment was obtained at 12 °C. Isolation experiments resulted in a mesophilic pure culture (strain BuS5) that used only propane and n-butane (methane, isobutane, alcohols or carboxylic acids did not support growth). Complete hydrocarbon oxidation to CO2 and the preferential oxidation of 12C-enriched alkanes were observed with strain BuS5 and other cultures. Metabolites of propane included iso- and n-propylsuccinate, indicating a subterminal as well as an unprecedented terminal alkane activation with involvement of fumarate. According to 16S ribosomal RNA analyses, strain BuS5 affiliates with Desulfosarcina/Desulfococcus, a cluster of widespread marine SRB. An enrichment culture with propane growing at 60 °C was dominated by Desulfotomaculum-like SRB. Our results suggest that diverse SRB are able to thrive in seep areas and gas reservoirs on propane and butane, thus altering the gas composition and contributing to sulphide production.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Microscopy and phylogenetic analysis.
Figure 2: Time course of the anaerobic consumption of propane and butane by a mesophilic strain.
Figure 3: Anaerobic activation reactions of propane suggested by identified metabolites.

References

  1. Claypool, G. E. & Kvenvolden, K. A. Methane and other hydrocarbon gases in marine sediment. Annu. Rev. Earth Planet. Sci. 11, 299–327 (1983)

    CAS  Article  ADS  Google Scholar 

  2. Hinrichs, K.-U. et al. Biological formation of ethane and propane in the deep marine subsurface. Proc. Natl Acad. Sci. USA 103, 14684–14689 (2006)

    CAS  Article  ADS  Google Scholar 

  3. Ashraf, W., Mihdhir, A. & Murrel, J. C. Bacterial oxidation of propane. FEMS Microbiol. Lett. 122, 1–6 (1994)

    CAS  Article  Google Scholar 

  4. Arp, D. J. Butane metabolism by butane-grown 'Pseudomonas butanovora'. . Microbiology 145, 1173–1180 (1999)

    CAS  Article  Google Scholar 

  5. Widdel, F., Boetius, A. & Rabus, R. in The Prokaryotes 3rd edn (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) Vol. 2 1028–1049 (Springer, New York, 2006)

    Book  Google Scholar 

  6. Gieg, L. M. & Suflita, J. M. Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ. Sci. Technol. 36, 3755–3762 (2002)

    CAS  Article  ADS  Google Scholar 

  7. Martini, A. M. et al. Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan Basin. Bull. Am. Assoc. Petrol. Geol. 87, 1355–1375 (2003)

    CAS  Google Scholar 

  8. Wenger, L. M., Davis, C. L. & Isaksen, G. H. Multiple controls on petroleum biodegradation and impact on oil quality. Soc. Petrol. Eng. Reserv. Eval. Eng. 5, 375–383 (2002)

    CAS  Google Scholar 

  9. Sassen, R. et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chem. Geol. 205, 195–217 (2004)

    CAS  Article  ADS  Google Scholar 

  10. Niemann, H. et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochim. Cosmochim. Acta 70, 5336–5355 (2006)

    CAS  Article  ADS  Google Scholar 

  11. Joye, S. B. et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem. Geol. 205, 219–238 (2004)

    CAS  Article  ADS  Google Scholar 

  12. Orcutt, B. N. et al. Life at the edge of methane ice: microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates. Chem. Geol. 205, 239–251 (2004)

    CAS  Article  ADS  Google Scholar 

  13. Simoneit, B. R. T., Kawka, O. E. & Brault, M. Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chem. Geol. 71, 169–182 (1988)

    CAS  Article  ADS  Google Scholar 

  14. Whelan, J. K., Simoneit, B. R. T. & Tarafa, M. E. C1-C8 Hydrocarbons in sediments from Guaymas Basin, Gulf of California — Comparison to Peru Margin, Japan Trench and California borderlands. Org. Geochem. 12, 171–194 (1988)

    CAS  Article  Google Scholar 

  15. Rabus, R. et al. Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: Evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J. Bacteriol. 183, 1707–1715 (2001)

    CAS  Article  Google Scholar 

  16. Alperin, M. J., Reeburgh, W. S. & Whiticar, M. J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Glob. Biogeochem. Cycles 2, 279–288 (1988)

    CAS  Article  ADS  Google Scholar 

  17. Martens, C. S., Albert, B. D. & Alperin, M. J. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernförde bay, German Baltic Sea. Am. J. Sci. 299, 589–610 (1999)

    CAS  Article  ADS  Google Scholar 

  18. Seifert, R., Nauhaus, K., Blumenberg, M., Krüger, M. & Michaelis, W. Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro . Org. Geochem. 37, 1411–1419 (2006)

    CAS  Article  Google Scholar 

  19. Kinnaman, F. S., Valentine, D. L. & Tyler, S. C. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane. Geochim. Cosmochim. Acta 71, 272–283 (2007)

    Article  ADS  Google Scholar 

  20. Formolo, M. J. et al. Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico. Chem. Geol. 205, 253–264 (2004)

    CAS  Article  ADS  Google Scholar 

  21. Kallmeyer, J. & Boetius, A. Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl. Environ. Microbiol. 70, 1231–1233 (2004)

    CAS  Article  Google Scholar 

  22. Head, I. M., Jones, D. M. & Larter, S. R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344–352 (2003)

    CAS  Article  ADS  Google Scholar 

  23. Kelley, D. S. et al. A serpentinite-hosted ecosystem: The Lost City hydrothermal field. Science 307, 1428–1434 (2005)

    CAS  Article  ADS  Google Scholar 

  24. Plass-Dülmer, C., Koppmann, R., Ratte, M. & Rudolph, J. Light nonmethane hydrocarbons in seawater. Glob. Biogeochem. Cycles 9, 79–100 (1995)

    Article  ADS  Google Scholar 

  25. Moser, D. P. et al. Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl. Environ. Microbiol. 71, 8773–8783 (2005)

    CAS  Article  Google Scholar 

  26. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004)

    CAS  Article  Google Scholar 

  27. Swofford, D. L. PAUP* 4.0: phylogenetic analysis using parsimony (and other methods). (Sinauer Associates, Sunderland, Massachusetts, 1999)

  28. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998)

    CAS  Article  Google Scholar 

  29. Snaidr, J., Amann, R., Huber, I., Ludwig, W. & Schleifer, K.-H. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63, 2884–2896 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Teske, A. et al. Microbial diversity of hydrothermal sediments in the Guaymas Basin: Evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68, 1994–2007 (2002)

    CAS  Article  Google Scholar 

  31. Weber, A. & Jørgensen, B. B. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. Deep-sea Res. I 49, 827–841 (2002)

    CAS  Article  Google Scholar 

  32. Widdel, F. & Bak, F. in The Prokaryotes 2nd edn (eds Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K.-H.) Vol. 4 3352–3378 (Springer, New York, 1992)

    Book  Google Scholar 

  33. Cline, J. D. Spectrophotometric determination of hydrogen sulphide in natural waters. Limnol. Oceanogr. 14, 454–458 (1969)

    CAS  Article  ADS  Google Scholar 

  34. Aeckersberg, F., Bak, F. & Widdel, F. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156, 5–14 (1991)

    CAS  Article  Google Scholar 

  35. Giese, B. & Meister, J. Die Addition von Kohlenwasserstoffen an Olefine. Eine neue synthetische Methode. Chem. Ber. 110, 2588–2600 (1977)

    CAS  Article  Google Scholar 

  36. Giese, B. & Kretzschmar, G. Radikalische Addition an cyclische Derivate der Maleinsäure. Chem. Ber. 115, 2012–2014 (1982)

    CAS  Article  Google Scholar 

  37. Giese, B. & Kretzschmar, G. Radikalkettenreaktionen mit Maleinsäureanhydriden. Zur kontrathermodynamischen Stereoselektrivität. Chem. Ber. 117, 3175–3182 (1984)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are particularly indebted to the shipboard science parties and submersible operation teams of the RV Seward Johnson II and RV Atlantis, and to K. Zengler for providing sediment samples from Guaymas basin. Funding for the Gulf of Mexico cruise was provided by the US National Science Foundation (Life in Extreme Environments programme), the US Department of Energy, and the US National Oceanographic and Atmospheric Administration. We thank J. Harder, C. Karger, R. Lendt and A. Sobotta for instrumental help. S.M.S. and S.B.J. acknowledge support through a fellowship received from the Hanse Wissenschaftskolleg, Delmenhorst (Germany). This study was supported by the Max-Planck-Gesellschaft and the GEOTECHNOLOGIEN research programme of the BMBF and DFG.

The nucleotide sequences have been deposited at EMBL, GenBank and DDBJ under accession numbers EF077225 (strain BuS5), EF077226 (enrichment culture ‘Butane12-GMe’), EF077227 (enrichment culture ‘Propane60-GuB’) and EF077228 (enrichment culture with butane at 60 °C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Widdel.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints.

Supplementary information

Supplementary Information.

The file contains Supplementary Figures 1-7 with Legends, Supplementary Tables 1-5 and additional references. (PDF 1871 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kniemeyer, O., Musat, F., Sievert, S. et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449, 898–901 (2007). https://doi.org/10.1038/nature06200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06200

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing