Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The development of a protoplanetary disk from its natal envelope


Class 0 protostars, the youngest type of young stellar objects, show many signs of rapid development from their initial, spheroidal configurations, and therefore are studied intensively for details of the formation of protoplanetary disks within protostellar envelopes. At millimetre wavelengths, kinematic signatures of collapse have been observed in several such protostars, through observations of molecular lines that probe their outer envelopes. It has been suggested that one or more components of the proto-multiple system NGC 1333–IRAS 4 (refs 1, 2) may display signs of an embedded region that is warmer and denser than the bulk of the envelope3,4. Here we report observations that reveal details of the core on Solar System dimensions. We detect in NGC 1333–IRAS 4B a rich emission spectrum of H2O, at wavelengths 20–37 μm, which indicates an origin in extremely dense, warm gas. We can model the emission as infall from a protostellar envelope onto the surface of a deeply embedded, dense disk, and therefore see the development of a protoplanetary disk. This is the only example of mid-infrared water emission from a sample of 30 class 0 objects, perhaps arising from a favourable orientation; alternatively, this may be an early and short-lived stage in the evolution of a protoplanetary disk.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spitzer-IRS low-resolution spectra of IRAS 4A and IRAS 4B, and false-colour mid-infrared image.
Figure 2: Comparison of observed and model spectra of IRAS 4B.
Figure 3: Cartoon depiction of our model for IRAS 4B.


  1. Choi, M., Panis, J.-F. & Evans, N. J. II Berkeley-Illinois-Maryland Association Survey of protostellar collapse candidates in HCO+ and HCN lines. Astrophys. J. Suppl. 122, 519–556 (1999)

    ADS  CAS  Article  Google Scholar 

  2. Di Francesco, J., Myers, P. C., Wilner, D. J., Ohashi, N. & Mardones, D. Infall, outflow, rotation, and turbulent motions of dense gas within NGC 1333 IRAS 4. Astrophys. J. 562, 770–789 (2001)

    ADS  CAS  Article  Google Scholar 

  3. Maret, S., Ceccarelli, C., Caux, E., Tielens, A. G. G. M. & Castets, A. Water emission in NGC 1333 – IRAS 4. Astron. Astrophys. 395, 573–585 (2002)

    ADS  CAS  Article  Google Scholar 

  4. Ceccarelli, C. et al. Water line emission in low-mass protostars. Astron. Astrophys. 342, L21–L24 (1999)

    ADS  CAS  Google Scholar 

  5. de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A. G. A. & Blaauw, A. A. HIPPARCOS census of the nearby OB associations. Astron. J. 117, 354–399 (1999)

    ADS  Article  Google Scholar 

  6. Looney, L. W., Mundy, L. G. & Welch, W. J. Unveiling the circumstellar envelope and disk: a subarcsecond survey of circumstellar structures. Astrophys. J. 529, 477–498 (2000)

    ADS  Article  Google Scholar 

  7. Knee, L. B. G. & Sandell, G. The molecular outflows in NGC 1333. Astron. Astrophys. 361, 671–684 (2000)

    ADS  CAS  Google Scholar 

  8. Blake, G. A. et al. A molecular line study of NGC 1333/IRAS 4. Astrophys. J. 441, 689–701 (1995)

    ADS  CAS  Article  Google Scholar 

  9. Neufeld, D. A., Feuchtgruber, H., Harwit, M. & Melnick, G. J. Infrared Space Observatory observations of far-infrared rotational emission lines of water vapour toward the supergiant star VY Canis Majoris. Astrophys. J. 517, L147–L150 (1999)

    ADS  CAS  Article  Google Scholar 

  10. Neufeld, D. A. et al. Detection of far-infrared rotational lines of water vapour toward W Hydrae. Astron. Astrophys. 315, L237–L240 (1996)

    ADS  CAS  Google Scholar 

  11. Scoville, N. Z. & Solomon, P. M. Radiative transfer, excitation, and cooling of molecular emission lines. Astrophys. J. 187, L67–L71 (1974)

    ADS  CAS  Article  Google Scholar 

  12. Ceccarelli, C., Hollenbach, D. J. & Tielens, A. G. G. M. Far-infrared line emission from collapsing protostellar envelopes. Astrophys. J. 471, 400–426 (1996)

    ADS  CAS  Article  Google Scholar 

  13. Doty, S. D. & Neufeld, D. A. Models for dense molecular cloud cores. Astrophys. J. 489, 122–142 (1997)

    ADS  CAS  Article  Google Scholar 

  14. Cassen, P. & Moosman, A. On the formation of protostellar disks. Icarus 48, 353–376 (1981)

    ADS  Article  Google Scholar 

  15. Neufeld, D. A. & Hollenbach, D. J. Dense molecular shocks and accretion onto protostellar disks. Astrophys. J. 428, 170–185 (1994)

    ADS  CAS  Article  Google Scholar 

  16. Ulrich, R. K. An infall model for the T Tauri phenomenon. Astrophys. J. 210, 377–391 (1976)

    ADS  CAS  Article  Google Scholar 

  17. Kenyon, S. J., Calvet, N. & Hartmann, L. The embedded young stars in the Taurus-Auriga molecular cloud. I — Models for spectral energy distributions. Astrophys. J. 414, 676–694 (1993)

    ADS  CAS  Article  Google Scholar 

  18. Neufeld, D. A. & Kaufman, M. J. Radiative cooling of warm molecular gas. Astrophys. J. 418, 263–272 (1993)

    ADS  CAS  Article  Google Scholar 

  19. Sandell, G., Aspin, C., Duncan, W. D., Russell, A. P. G. & Robson, E. I. NGC 1333 IRAS 4: a very young, low-luminosity binary system. Astrophys. J. 376, L17–L20 (1991)

    ADS  Article  Google Scholar 

  20. Weingartner, J. C. & Draine, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296–309 (2001)

    ADS  Article  Google Scholar 

  21. Rothman, L. S. et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2004)

    ADS  Article  Google Scholar 

  22. Green, S., Maluendes, S. & McLean, A. D. Improved collisional excitation rates for interstellar water. Astrophys. J. Suppl. 85, 181–185 (1993)

    ADS  CAS  Article  Google Scholar 

  23. Phillips, T. R., Maluendes, S. & Green, S. Collisional excitation of H2O by H2 molecules. Astrophys. J. 107, 467–474 (1996)

    ADS  CAS  Article  Google Scholar 

Download references


This work was supported in part by NASA through the Spitzer-IRS Instrument Team, Origins and Astrobiology programmes, and by CONACyT (México). We are grateful to R. Gutermuth for use of the Spitzer-IRAC data on NGC 1333, and to M. Jura, L. Keller, G. Sloan and D. Hollenbach for discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dan M. Watson.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion to which the main-body text refers, Supplementary Tables 1-2 and Supplementary Figures 1-2 with Legends. Supplementary Figure S1 shows the rotational energy level diagram of water and Supplementary Figure 2 is a large rendition of the high-resolution spectra of NGC 1333 IRAS4B and the model of this object, with all spectral features identified. (PDF 221 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Watson, D., Bohac, C., Hull, C. et al. The development of a protoplanetary disk from its natal envelope. Nature 448, 1026–1028 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing