Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deposition of metal films on an ionic liquid as a basis for a lunar telescope

Abstract

An optical/infrared telescope of 20–100 m aperture located on the Moon would be able to observe objects 100 to 1,000 times fainter than the proposed next generation of space telescopes1. The infrared region of the spectrum is particularly important for observations of objects at redshifts z > 7. The apparent simplicity and low mass of a liquid mirror telescope, compared with a traditional pointable glass mirror, suggest that the concept should be considered further. A previously proposed liquid mirror telescope, based upon a spinning liquid metallic alloy2, is not appropriate for infrared applications, which will require a liquid below 130 K. Here we report the successful coating of an ionic liquid with silver. The surface is smooth and the silver coating is stable on a timescale of months. The underlying ionic liquid does not evaporate in a vacuum and remains liquid down to a temperature of 175 K. Given that there are 106 simple and 1018 ternary ionic liquids, it should be possible to synthesize liquids with even lower melting temperatures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Reflectivity curves obtained for silver-coated liquids.
Figure 2: Three-dimensional map of a small section of a silver-coated liquid mirror.

References

  1. 1

    Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006)

    ADS  Article  Google Scholar 

  2. 2

    Borra, E. F. The case for liquid mirror in a lunar telescope. Astrophys. J. 373, 317–321 (1991)

    ADS  Article  Google Scholar 

  3. 3

    Girard, L. & Borra, E. F. Optical tests of a 2.5-m diameter liquid mirror. II. Behavior under external perturbations and scattered light measurements. Appl. Opt. 36, 6278–6288 (1997)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Ninane, N. M. &. Jamar, C. A. Parabolic liquid mirrors in optical shop testing. Appl. Opt. 35, 6131–6139 (1996)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hickson, P. & Mulrooney, M. K. University of British Columbia—NASA multi-narrowband survey. I. Description and photometric properties of the survey. Astrophys. J. 115 (Suppl.). 35–42 (1998)

    ADS  Article  Google Scholar 

  6. 6

    Cabanac, R. Borra, E. F. & Beauchemin, M. A search for peculiar objects with the NASA Orbital Debris Observatory 3-m Liquid Mirror Telescope. Astrophys. J. 509, 309–323 (1998)

    ADS  Article  Google Scholar 

  7. 7

    Hickson, P. Applied optics, hydrodynamics of rotating liquid mirrors. I. Synchronous disturbances. Appl. Opt. 45, 8052–8062 (2006)

    ADS  Article  Google Scholar 

  8. 8

    Hickson, P. & Racine, R. Image quality of liquid-mirror telescopes. Publ. Astron. Soc. Pacif. 119, 456–465 (2007)

    ADS  Article  Google Scholar 

  9. 9

    Hickson, P. et al. The Large Zenith Telescope—a 6-meter liquid-mirror telescope. Publ. Astron. Soc. Pacif. 119, 444–455 (2007)

    ADS  Article  Google Scholar 

  10. 10

    Hickson, P. & Lanzetta, K. M. Large Aperture Mirror Array (LAMA): conceptual design for a distributed-aperture 42-meter telescope. Proc. SPIE 4840, 273–282 (2003)

    ADS  Article  Google Scholar 

  11. 11

    Hickson, P. & Lanzetta, K. M. Large Aperture Mirror Array (LAMA): project overview. Proc. SPIE 532, 115–125 (2004)

    Article  Google Scholar 

  12. 12

    Giavalisco, M. M. Lyman-break galaxies. Annu. Rev. Astron. Astrophys. 40, 579–642 (2002)

    ADS  Article  Google Scholar 

  13. 13

    Barkana, R. & Loeb, A. In the beginning: the first sources of light and the reionization of the universe. Phys. Rep. 349, 125–238 (2001)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Bromm, V., Coppi, P. S. & Larson, R. B. Forming the first stars in the universe: the fragmentation of primordial gas. Astrophys. J. 527, L5–L8 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Abel, T., Bryan, G. L. & Norman, M. L. The formation and fragmentation of primordial molecular clouds. Astrophys. J. 540, 39–44 (2000)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Borra, E. F. et al. Nanoengineered astronomical optics. Astron. Astrophys. 419, 777–782 (2004)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Déry, J.-P., Gingras, J., Yockell-Lelièvre, H., Borra, E. F. & Ritcey, A. M. Characterization of reflective silver nanoparticle surface films. Colloids Surf. A 279, 79–86 (2006)

    Article  Google Scholar 

  18. 18

    Wasserscheid, P. & Welton, T. Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  19. 19

    Stark, A. & Seddon, K. R. in Kirk-Othmer Encyclopaedia of Chemical Technology (ed. Seidel, A.) 836–920 (John Wiley & Sons, Hoboken, New Jersey, 2007)

    Google Scholar 

  20. 20

    Earle, M. J. et al. The distillation and volatility of ionic liquids. Nature 439, 831–834 (2006)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Deetlefs, M. & Seddon, K. R. Ionic liquids: fact and fiction. Chim. Oggi 24, 16–23 (2006)

    CAS  Google Scholar 

  22. 22

    MacFarlane, D. R. & Seddon, K. R. Ionic liquids—Progress on the fundamental issues. Aust. J. Chem. 60, 3–5 (2007)

    CAS  Article  Google Scholar 

  23. 23

    Holbrey, J. D. et al. Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem. 4, 407–413 (2002)

    CAS  Article  Google Scholar 

  24. 24

    Seddon, K. R. in The International George Papatheodorou Symposium: Proceedings (eds Boghosian, S., Dracopoulos, V., Kontoyannis, C. G. & Voyiatzis, G. A.) 131–135 (Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, 1999)

    Google Scholar 

  25. 25

    Fonseca, G. S. et al. Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids. J. Colloid Interf. Sci. 301, 193–204 (2006)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Itoh, H., Naka, K. & Chujo, Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J. Am. Chem. Soc. 126, 3026–3027 (2004)

    CAS  Article  Google Scholar 

  27. 27

    Warren, S. C. et al. Generalized route to metal nanoparticles with liquid behavior. J. Am. Chem. Soc. 128, 12074–12075 (2006)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank NASA for a NIAC grant and the Canadian Space Agency for primary funding. We also gratefully acknowledge the input from M. Deetlefs; K.R.S. also thanks the EPSRC for support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ermanno F. Borra.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion. It includes information on field of regard issues, technical details and ionic liquids. (PDF 1047 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borra, E., Seddiki, O., Angel, R. et al. Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447, 979–981 (2007). https://doi.org/10.1038/nature05909

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing