Developmental reprogramming after chromosome transfer into mitotic mouse zygotes

Abstract

Until now, animal cloning and the production of embryonic stem cell lines by somatic cell nuclear transfer have relied on introducing nuclei into meiotic oocytes. In contrast, attempts at somatic cell nuclear transfer into fertilized interphase zygotes have failed. As a result, it has generally been assumed that unfertilized human oocytes will be required for the generation of tailored human embryonic stem cell lines from patients by somatic cell nuclear transfer. Here we report, however, that, unlike interphase zygotes, mouse zygotes temporarily arrested in mitosis can support somatic cell reprogramming, the production of embryonic stem cell lines and the full-term development of cloned animals. Thus, human zygotes and perhaps human embryonic blastomeres may be useful supplements to human oocytes for the creation of patient-derived human embryonic stem cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The first embryonic cell cycle.
Figure 2: Chromosome transfer into zygotes arrested in mitosis.
Figure 3: Developmental potential in vitro and in vivo after chromosome transfer from ES cells into mitotic zygotes.
Figure 4: Derivation of ES cell lines from somatic-cell chromosome transfer blastocysts.
Figure 5: Aneuploid zygotes with more than two pronuclei can be used as recipients for chromosome transfer.

References

  1. 1

    McGrath, J. & Solter, D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220, 1300–1302 (1983)

    ADS  CAS  Article  Google Scholar 

  2. 2

    McGrath, J. & Solter, D. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226, 1317–1319 (1984)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Robl, J. M. et al. Nuclear transplantation in bovine embryos. J. Anim. Sci. 64, 642–647 (1987)

    CAS  Article  Google Scholar 

  4. 4

    Willadsen, S. M. Nuclear transplantation in sheep embryos. Nature 320, 63–65 (1986)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Stice, S. L. & Robl, J. M. Nuclear reprogramming in nuclear transplant rabbit embryos. Biol. Reprod. 39, 657–664 (1988)

    CAS  Article  Google Scholar 

  6. 6

    Prather, R. S., Sims, M. M. & First, N. L. Nuclear transplantation in early pig embryos. Biol. Reprod. 41, 414–418 (1989)

    CAS  Article  Google Scholar 

  7. 7

    Cheong, H. T., Takahashi, Y. & Kanagawa, H. Development of mouse embryonic nuclei transferred to enucleated oocytes and zygotes. Jpn. J. Vet. Res. 40, 149–159 (1992)

    CAS  PubMed  Google Scholar 

  8. 8

    Campbell, K. H., McWhir, J., Ritchie, W. A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66 (1996)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 (1998)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Chesne, P. et al. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nature Biotechnol. 20, 366–369 (2002)

    CAS  Article  Google Scholar 

  12. 12

    Polejaeva, I. A. et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Kato, Y. et al. Eight calves cloned from somatic cells of a single adult. Science 282, 2095–2098 (1998)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Zhou, Q. et al. Generation of fertile cloned rats by regulating oocyte activation. Science 302, 1179 (2003)

    CAS  Article  Google Scholar 

  15. 15

    Wakayama, T., Tateno, H., Mombaerts, P. & Yanagimachi, R. Nuclear transfer into mouse zygotes. Nature Genet. 24, 108–109 (2000)

    CAS  Article  Google Scholar 

  16. 16

    Schurmann, A., Wells, D. N. & Oback, B. Early zygotes are suitable recipients for bovine somatic nuclear transfer and result in cloned offspring. Reproduction 132, 839–848 (2006)

    CAS  Article  Google Scholar 

  17. 17

    Steinbrook, R. Egg donation and human embryonic stem-cell research. N. Engl. J. Med. 354, 324–326 (2006)

    CAS  Article  Google Scholar 

  18. 18

    Norsigian, J. in Boston Globe 25 February. A13 (2005)

    Google Scholar 

  19. 19

    Do, J. T. & Scholer, H. R. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22, 941–949 (2004)

    CAS  Article  Google Scholar 

  20. 20

    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    CAS  Article  Google Scholar 

  21. 21

    Gao, S. et al. Germinal vesicle material is essential for nucleus remodeling after nuclear transfer. Biol. Reprod. 67, 928–934 (2002)

    CAS  Article  Google Scholar 

  22. 22

    Rudner, A. D. & Murray, A. W. The spindle assembly checkpoint. Curr. Opin. Cell Biol. 8, 773–780 (1996)

    CAS  Article  Google Scholar 

  23. 23

    Hamilton, B. T. & Snyder, J. A. Rapid completion of mitosis and cytokinesis in PtK cells following release from nocodazole arrest. Eur. J. Cell Biol. 28, 190–194 (1982)

    CAS  PubMed  Google Scholar 

  24. 24

    Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Ehrhardt, A. G. & Sluder, G. Spindle pole fragmentation due to proteasome inhibition. J. Cell. Physiol. 204, 808–818 (2005)

    CAS  Article  Google Scholar 

  26. 26

    Cheong, H. T. & Kanagawa, H. Assessment of cytoplasmic effects on the development of mouse embryonic nuclei transferred to enucleated zygotes. Theriogenology 39, 451–461 (1993)

    CAS  Article  Google Scholar 

  27. 27

    Wakayama, T., Rodriguez, I., Perry, A. C., Yanagimachi, R. & Mombaerts, P. Mice cloned from embryonic stem cells. Proc. Natl Acad. Sci. USA 96, 14984–14989 (1999)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Beck, F., Erler, T., Russell, A. & James, R. Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev. Dyn. 204, 219–227 (1995)

    CAS  Article  Google Scholar 

  29. 29

    Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005)

    CAS  Article  Google Scholar 

  30. 30

    Eggan, K. et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl Acad. Sci. USA 98, 6209–6214 (2001)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Yoshimizu, T. et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ. 41, 675–684 (1999)

    CAS  Article  Google Scholar 

  32. 32

    Scholer, H. R., Dressler, G. R., Balling, R., Rohdewohld, H. & Gruss, P. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J. 9, 2185–2195 (1990)

    CAS  Article  Google Scholar 

  33. 33

    Boiani, M., Eckardt, S., Scholer, H. R. & McLaughlin, K. J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219 (2002)

    CAS  Article  Google Scholar 

  34. 34

    Greda, P., Karasiewicz, J. & Modlinski, J. A. Mouse zygotes as recipients in embryo cloning. Reproduction 132, 741–748 (2006)

    CAS  Article  Google Scholar 

  35. 35

    Tada, M., Tada, T., Lefebvre, L., Barton, S. C. & Surani, M. A. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520 (1997)

    CAS  Article  Google Scholar 

  36. 36

    Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553–1558 (2001)

    CAS  Article  Google Scholar 

  37. 37

    Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373 (2005)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Ono, Y., Shimozawa, N., Ito, M. & Kono, T. Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol. Reprod. 64, 44–50 (2001)

    CAS  Article  Google Scholar 

  39. 39

    Hall, V. J. et al. Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer. Hum. Reprod. 22, 52–62 (2007)

    CAS  Article  Google Scholar 

  40. 40

    Wakayama, S. et al. Establishment of mouse embryonic stem cell lines from somatic cell nuclei by nuclear transfer into aged, fertilization-failure mouse oocytes. Curr. Biol. 17, R120–R121 (2007)

    CAS  Article  Google Scholar 

  41. 41

    Wakayama, S. et al. Production of offspring from one-day-old oocytes stored at room temperature. J. Reprod. Dev. 50, 627–637 (2004)

    Article  Google Scholar 

  42. 42

    Nikolettos, N. & Al-Hasani, S. Frozen pronuclear oocytes: advantages for the patient. Mol. Cell. Endocrinol. 169, 55–62 (2000)

    CAS  Article  Google Scholar 

  43. 43

    Damario, M. A., Hammitt, D. G., Galanits, T. M., Session, D. R. & Dumesic, D. A. Pronuclear stage cryopreservation after intracytoplasmic sperm injection and conventional IVF: implications for timing of the freeze. Fertil. Steril. 72, 1049–1054 (1999)

    CAS  Article  Google Scholar 

  44. 44

    Van der Ven, H. H. et al. Polyspermy in in vitro fertilization of human oocytes: frequency and possible causes. Ann. NY Acad. Sci. 442, 88–95 (1985)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Munne, S. & Cohen, J. Chromosome abnormalities in human embryos. Hum. Reprod. Update 4, 842–855 (1998)

    CAS  Article  Google Scholar 

  46. 46

    Kola, I., Trounson, A., Dawson, G. & Rogers, P. Tripronuclear human oocytes: altered cleavage patterns and subsequent karyotypic analysis of embryos. Biol. Reprod. 37, 395–401 (1987)

    CAS  Article  Google Scholar 

  47. 47

    Anon. Assisted reproductive technology in the United States: 2000 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil. Steril. 81, 1207–1220 (2004)

  48. 48

    Sathananthan, A. H. et al. Centrioles in the beginning of human development. Proc. Natl Acad. Sci. USA 88, 4806–4810 (1991)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Beard, C., Hochedlinger, K., Plath, K., Wutz, A. & Jaenisch, R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44, 23–28 (2006)

    CAS  Article  Google Scholar 

  50. 50

    Wakayama, T. & Yanagimachi, R. Cloning of male mice from adult tail-tip cells. Nature Genet. 22, 127–128 (1999)

    CAS  Article  Google Scholar 

  51. 51

    Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo: A Laboratory Manual 3rd edn (Cold Spring Harbor Laboratory Press, New York, 2003)

    Google Scholar 

  52. 52

    Wolf, J. P. et al. Absence of block to polyspermy at the human oolemma. Fertil. Steril. 67, 1095–1102 (1997)

    CAS  Article  Google Scholar 

  53. 53

    Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Murray for insight into the regulation of the cell cycle; K. Hochedlinger and C. Beard for KH2 ES cells and plasmids; A. Greenwood for H2B and cherry plasmids; C. Cowan, K. Niakan, J. Dimos, I. Tabansky, W. Strausack, A. Schier, A. McMahon, R. Jaenisch and D. Melton for advice and discussions; and D. Melton, A. Schier, D. Lopez, R. Jaenisch, A. Meissner, A. McMahon, A. Murray and A. Chen for critical reading of the manuscript. This work was supported by funds from the Stowers Medical Institute, The Harvard Stem Cell Institute and the National Institutes of Health to K.E. and by a fellowship from the Swiss National Science Foundation to D.E. K.E. is a fellow of the John D. and Catherine T. MacArthur Foundation.

Author Contributions K.E. and D.E. designed the experiments. D.E. constructed the H2B-cherry mouse ES cell line and mouse. D.E., J.R. and K.E. performed chromosome transfer experiments and stem cell derivation. G.B. assisted D.E. with blastocyst injections and embryo transfer and prepared the figures. K.E. and D.E. wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kevin Eggan.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Tables 1-4, Supplementary Figures 1-5 with Legends, additional experimental information and additional references. (PDF 13403 kb)

Supplementary Video 1

This file contains Supplementary Video 1. (MOV 5909 kb)

Supplementary Video 2

This file contains Supplementary Video 2. (MOV 1303 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Egli, D., Rosains, J., Birkhoff, G. et al. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447, 679–685 (2007). https://doi.org/10.1038/nature05879

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing