Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for an ancient martian ocean in the topography of deformed shorelines


A suite of observations suggests that the northern plains of Mars, which cover nearly one third of the planet's surface, may once have contained an ocean1,2,3,4,5,6,7. Perhaps the most provocative evidence for an ancient ocean is a set of surface features that ring the plains for thousands of kilometres and that have been interpreted as a series of palaeoshorelines of different age1,7. It has been shown, however, that topographic profiles along the putative shorelines contain long-wavelength trends with amplitudes of up to several kilometres4,5,8, and these trends have been taken as an argument against the martian shoreline (and ocean) hypothesis8. Here we show that the long-wavelength topography of the shorelines is consistent with deformation caused by true polar wander—a change in the orientation of a planet with respect to its rotation pole—and that the inferred pole path has the geometry expected for a true polar wander event that postdates the formation of the massive Tharsis volcanic rise.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Possible palaeoshorelines on Mars.
Figure 2: Changes in topography due to TPW.
Figure 3: TPW path that reconciles shoreline deformation.


  1. Parker, T. J., Saunders, R. S. & Schneeberger, D. M. Transitional morphology in west Deuteronilus Mensae, Mars: Implications for modification of the lowland/upland boundary. Icarus 82, 111–145 (1989)

    ADS  Article  Google Scholar 

  2. Baker, V. R., Strom, R. G., Gulick, V. C., Kargel, J. S. & Komatsu, G. Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352, 589–594 (1991)

    ADS  Article  Google Scholar 

  3. Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. C. & Schneeberger, D. M. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98, 11061–11078 (1993)

    ADS  Article  Google Scholar 

  4. Head, J. W. et al. Oceans in the past history of Mars: Tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data. Geophys. Res. Lett. 25, 4401–4404 (1998)

    ADS  Article  Google Scholar 

  5. Head, J. W. et al. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science 286, 2134–2137 (1999)

    ADS  CAS  Article  Google Scholar 

  6. Ivanov, M. A. & Head, J. W. Chryse Planitia, Mars: Topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res. 106, 3275–3296 (2001)

    ADS  Article  Google Scholar 

  7. Clifford, S. M. & Parker, T. J. The evolution of the martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001)

    ADS  CAS  Article  Google Scholar 

  8. Carr, M. H. & Head, J. W. Oceans on Mars: An assessment of the observational evidence and possible fate. J. Geophys. Res. 108 5042 doi: 10.1029/2002JE001963 (2003)

    Article  Google Scholar 

  9. Malin, M. C. & Edgett, K. S. Oceans or seas in the Martian northern lowlands: High resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26, 3049–3052 (1999)

    ADS  Article  Google Scholar 

  10. Tanaka, K. L. & Scott, D. H. Geologic map of the polar regions of Mars. US Geol. Surv. Misc. Invest. Map I-1802C. (1987)

  11. Sabadini, R., Doglioni, C. & Yuen, D. A. Eustatic sea level fluctuations induced by polar wander. Nature 345, 708–710 (1990)

    ADS  Article  Google Scholar 

  12. Mound, J. E. & Mitrovica, J. X. True polar wander as a mechanism for second-order sea-level variations. Science 279, 534–537 (1998)

    ADS  CAS  Article  Google Scholar 

  13. Gold, T. Instability of the Earth’s axis of rotation. Nature 175, 526–529 (1955)

    ADS  Article  Google Scholar 

  14. Willemann, R. J. Reorientation of planets with elastic lithospheres. Icarus 60, 701–709 (1984)

    ADS  Article  Google Scholar 

  15. Smith, D. E. et al. The gravity field of Mars: results from Mars Global Surveyor. Science 286, 94–97 (1999)

    ADS  CAS  Article  Google Scholar 

  16. Zuber, M. T. & Smith, D. E. Mars without Tharsis. J. Geophys. Res. 102, 28673–28686 (1997)

    ADS  Article  Google Scholar 

  17. Matsuyama, I., Mitrovica, J. X., Manga, M., Perron, J. T. & Richards, M. A. Rotational stability of dynamic planets with elastic lithospheres. J. Geophys. Res. 111 E02003 doi: 10.1029/2005JE002447 (2006)

    ADS  Article  Google Scholar 

  18. Arkani-Hamed, J. & Boutin, D. Paleomagnetic poles of Mars: revisited. J. Geophys. Res. 109 E03011 doi: 10.1029/2003JE002229 (2004)

    ADS  Article  Google Scholar 

  19. Hood, L. L., Young, C. N., Richmond, N. C. & Harrison, K. P. Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian. Icarus 177, 144–173 (2005)

    ADS  Article  Google Scholar 

  20. Zuber, M. T. et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287, 1788–1793 (2000)

    ADS  CAS  Article  Google Scholar 

  21. Searls, M. L., Banerdt, W. B. & Phillips, R. J. Utopia and Hellas basins, Mars: Twins separated at birth. J. Geophys. Res. 111 E08005 doi: 10.1029/2005JE002666 (2006)

    ADS  Article  Google Scholar 

  22. Leverington, D. W. & Ghent, R. R. Differential subsidence and rebound in response to changes in water loading on Mars: Possible effects on the geometry of ancient shorelines. J. Geophys. Res. 109 E01005 doi: 10.1029/2003JE002141 (2004)

    ADS  Article  Google Scholar 

  23. Willemann, R. J. & Turcotte, D. L. The role of lithospheric stress in the support of the Tharsis rise. J. Geophys. Res. 87, 9793–9801 (1982)

    ADS  Article  Google Scholar 

  24. Redmond, H. L. & King, S. D. A numerical study of a mantle plume beneath the Tharsis Rise: Reconciling dynamic uplift and lithospheric support models. J. Geophys. Res. 109 E09008 doi: 10.1029/2003JE002228 (2004)

    ADS  Article  Google Scholar 

  25. Roberts, J. H. & Zhong, S. Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars. J. Geophys. Res. 109 E03009 doi: 10.1029/2003JE002226 (2004)

    ADS  Article  Google Scholar 

  26. Elkins-Tanton, L. T., Zaranek, S. E., Parmentier, E. M. & Hess, P. C. Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005)

    ADS  CAS  Article  Google Scholar 

  27. Lambeck, K. The Earth's Variable Rotation (Cambridge Univ. Press, Cambridge, UK, 2005)

    Google Scholar 

  28. Sohl, F. & Spohn, T. The interior structure of Mars: Implications from SNC meteorites. J. Geophys. Res. 102, 1613–1636 (1997)

    ADS  CAS  Article  Google Scholar 

  29. Banerdt, W. B., Golombek, M. P. & Tanaka, K. L. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 249–297 (Univ. Arizona Press, Tucson, Arizona, 1992)

    Google Scholar 

  30. Webb, V. E. Putative shorelines in northern Arabia Terra, Mars. J. Geophys. Res. 109, E09010 (2004)

    ADS  Google Scholar 

Download references


This work was supported by the NASA Astrobiology Institute (J.T.P. and M.M.), a Reginald A. Daly Postdoctoral Fellowship (J.T.P.), the Miller Institute for Basic Research in Science (J.X.M.), and NSERC (J.X.M.).

Author Contributions All authors contributed equally to this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. Taylor Perron.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information 1

This file contains Supplementary Discussion of the mechanics of post-Tharsis TPW on Mars, with reference to possible driving loads; Supplementary Figures S1-S2 with Legends and additional references. (PDF 275 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perron, J., Mitrovica, J., Manga, M. et al. Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature 447, 840–843 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing