Evidence for an ancient martian ocean in the topography of deformed shorelines

Abstract

A suite of observations suggests that the northern plains of Mars, which cover nearly one third of the planet's surface, may once have contained an ocean1,2,3,4,5,6,7. Perhaps the most provocative evidence for an ancient ocean is a set of surface features that ring the plains for thousands of kilometres and that have been interpreted as a series of palaeoshorelines of different age1,7. It has been shown, however, that topographic profiles along the putative shorelines contain long-wavelength trends with amplitudes of up to several kilometres4,5,8, and these trends have been taken as an argument against the martian shoreline (and ocean) hypothesis8. Here we show that the long-wavelength topography of the shorelines is consistent with deformation caused by true polar wander—a change in the orientation of a planet with respect to its rotation pole—and that the inferred pole path has the geometry expected for a true polar wander event that postdates the formation of the massive Tharsis volcanic rise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Possible palaeoshorelines on Mars.
Figure 2: Changes in topography due to TPW.
Figure 3: TPW path that reconciles shoreline deformation.

References

  1. 1

    Parker, T. J., Saunders, R. S. & Schneeberger, D. M. Transitional morphology in west Deuteronilus Mensae, Mars: Implications for modification of the lowland/upland boundary. Icarus 82, 111–145 (1989)

  2. 2

    Baker, V. R., Strom, R. G., Gulick, V. C., Kargel, J. S. & Komatsu, G. Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352, 589–594 (1991)

  3. 3

    Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. C. & Schneeberger, D. M. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98, 11061–11078 (1993)

  4. 4

    Head, J. W. et al. Oceans in the past history of Mars: Tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data. Geophys. Res. Lett. 25, 4401–4404 (1998)

  5. 5

    Head, J. W. et al. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science 286, 2134–2137 (1999)

  6. 6

    Ivanov, M. A. & Head, J. W. Chryse Planitia, Mars: Topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res. 106, 3275–3296 (2001)

  7. 7

    Clifford, S. M. & Parker, T. J. The evolution of the martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001)

  8. 8

    Carr, M. H. & Head, J. W. Oceans on Mars: An assessment of the observational evidence and possible fate. J. Geophys. Res. 108 5042 doi: 10.1029/2002JE001963 (2003)

  9. 9

    Malin, M. C. & Edgett, K. S. Oceans or seas in the Martian northern lowlands: High resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26, 3049–3052 (1999)

  10. 10

    Tanaka, K. L. & Scott, D. H. Geologic map of the polar regions of Mars. US Geol. Surv. Misc. Invest. Map I-1802C. (1987)

  11. 11

    Sabadini, R., Doglioni, C. & Yuen, D. A. Eustatic sea level fluctuations induced by polar wander. Nature 345, 708–710 (1990)

  12. 12

    Mound, J. E. & Mitrovica, J. X. True polar wander as a mechanism for second-order sea-level variations. Science 279, 534–537 (1998)

  13. 13

    Gold, T. Instability of the Earth’s axis of rotation. Nature 175, 526–529 (1955)

  14. 14

    Willemann, R. J. Reorientation of planets with elastic lithospheres. Icarus 60, 701–709 (1984)

  15. 15

    Smith, D. E. et al. The gravity field of Mars: results from Mars Global Surveyor. Science 286, 94–97 (1999)

  16. 16

    Zuber, M. T. & Smith, D. E. Mars without Tharsis. J. Geophys. Res. 102, 28673–28686 (1997)

  17. 17

    Matsuyama, I., Mitrovica, J. X., Manga, M., Perron, J. T. & Richards, M. A. Rotational stability of dynamic planets with elastic lithospheres. J. Geophys. Res. 111 E02003 doi: 10.1029/2005JE002447 (2006)

  18. 18

    Arkani-Hamed, J. & Boutin, D. Paleomagnetic poles of Mars: revisited. J. Geophys. Res. 109 E03011 doi: 10.1029/2003JE002229 (2004)

  19. 19

    Hood, L. L., Young, C. N., Richmond, N. C. & Harrison, K. P. Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian. Icarus 177, 144–173 (2005)

  20. 20

    Zuber, M. T. et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287, 1788–1793 (2000)

  21. 21

    Searls, M. L., Banerdt, W. B. & Phillips, R. J. Utopia and Hellas basins, Mars: Twins separated at birth. J. Geophys. Res. 111 E08005 doi: 10.1029/2005JE002666 (2006)

  22. 22

    Leverington, D. W. & Ghent, R. R. Differential subsidence and rebound in response to changes in water loading on Mars: Possible effects on the geometry of ancient shorelines. J. Geophys. Res. 109 E01005 doi: 10.1029/2003JE002141 (2004)

  23. 23

    Willemann, R. J. & Turcotte, D. L. The role of lithospheric stress in the support of the Tharsis rise. J. Geophys. Res. 87, 9793–9801 (1982)

  24. 24

    Redmond, H. L. & King, S. D. A numerical study of a mantle plume beneath the Tharsis Rise: Reconciling dynamic uplift and lithospheric support models. J. Geophys. Res. 109 E09008 doi: 10.1029/2003JE002228 (2004)

  25. 25

    Roberts, J. H. & Zhong, S. Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars. J. Geophys. Res. 109 E03009 doi: 10.1029/2003JE002226 (2004)

  26. 26

    Elkins-Tanton, L. T., Zaranek, S. E., Parmentier, E. M. & Hess, P. C. Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005)

  27. 27

    Lambeck, K. The Earth's Variable Rotation (Cambridge Univ. Press, Cambridge, UK, 2005)

  28. 28

    Sohl, F. & Spohn, T. The interior structure of Mars: Implications from SNC meteorites. J. Geophys. Res. 102, 1613–1636 (1997)

  29. 29

    Banerdt, W. B., Golombek, M. P. & Tanaka, K. L. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 249–297 (Univ. Arizona Press, Tucson, Arizona, 1992)

  30. 30

    Webb, V. E. Putative shorelines in northern Arabia Terra, Mars. J. Geophys. Res. 109, E09010 (2004)

Download references

Acknowledgements

This work was supported by the NASA Astrobiology Institute (J.T.P. and M.M.), a Reginald A. Daly Postdoctoral Fellowship (J.T.P.), the Miller Institute for Basic Research in Science (J.X.M.), and NSERC (J.X.M.).

Author Contributions All authors contributed equally to this work.

Author information

Correspondence to J. Taylor Perron.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information 1

This file contains Supplementary Discussion of the mechanics of post-Tharsis TPW on Mars, with reference to possible driving loads; Supplementary Figures S1-S2 with Legends and additional references. (PDF 275 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perron, J., Mitrovica, J., Manga, M. et al. Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature 447, 840–843 (2007). https://doi.org/10.1038/nature05873

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.