Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prion recognition elements govern nucleation, strain specificity and species barriers

Abstract

Prions are proteins that can switch to self-perpetuating, infectious conformations. The abilities of prions to replicate, form structurally distinct strains, and establish and overcome transmission barriers between species are poorly understood. We exploit surface-bound peptides to overcome complexities of investigating such problems in solution. For the yeast prion Sup35, we find that the switch to the prion state is controlled with exquisite specificity by small elements of primary sequence. Strikingly, these same sequence elements govern the formation of distinct self-perpetuating conformations (prion strains) and determine species-specific seeding activities. A Sup35 chimaera that traverses the transmission barrier between two yeast species possesses the critical sequence elements from both. Using this chimaera, we show that the influence of environment and mutations on the formation of species-specific strains is driven by selective recognition of either sequence element. Thus, critical aspects of prion conversion are enciphered by subtle differences between small, highly specific recognition elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of recognition sequences within ScNM using peptide arrays.
Figure 2: Analysis of CaNM recognition sequences and the species barrier between S. cerevisiae/C. albicans NM.
Figure 3: Analysis of the conformational preference of the S. cerevisiae/C. albicans NM chimaera.
Figure 4: Analysis of the mutational disruption of the ScNM and CaNM recognition elements.

Similar content being viewed by others

References

  1. Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Fowler, D. M. et al. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, 100–107 (2006)

    Article  CAS  Google Scholar 

  4. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000)

    Article  ADS  CAS  Google Scholar 

  5. True, H. L., Berlin, I. & Lindquist, S. L. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431, 184–187 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Eaglestone, S. S., Cox, B. S. & Tuite, M. F. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18, 1974–1981 (1999)

    Article  CAS  Google Scholar 

  7. Si, K., Lindquist, S. & Kandel, E. R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003)

    Article  CAS  Google Scholar 

  8. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Wickner, R. B. & Masison, D. C. Evidence for two prions in yeast: [URE3] and [PSI]. Curr. Top. Microbiol. Immunol. 207, 147–160 (1996)

    CAS  PubMed  Google Scholar 

  10. Wickner, R. B. [Ure3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000)

    Article  CAS  Google Scholar 

  12. Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA 94, 9773–9778 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Chien, P., Weissman, J. S. & DePace, A. H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem. 73, 617–656 (2004)

    Article  CAS  Google Scholar 

  14. Tuite, M. F. & Cox, B. S. Propagation of yeast prions. Nature Rev. Mol. Cell Biol. 4, 878–890 (2003)

    Article  CAS  Google Scholar 

  15. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Bruce, M. E., McConnell, I., Fraser, H. & Dickinson, A. G. The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J. Gen. Virol. 72, 595–603 (1991)

    Article  CAS  Google Scholar 

  18. Caughey, B., Raymond, G. J. & Bessen, R. A. Strain-dependent differences in β-sheet conformations of abnormal prion protein. J. Biol. Chem. 273, 32230–32235 (1998)

    Article  CAS  Google Scholar 

  19. Kocisko, D. A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471–474 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Safar, J. et al. Eight prion strains have PrP(Sc) molecules with different conformations. Nature Med. 4, 1157–1165 (1998)

    Article  CAS  Google Scholar 

  21. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chien, P. & Weissman, J. S. Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410, 223–227 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000)

    Article  CAS  Google Scholar 

  24. Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550 (2001)

    Article  CAS  Google Scholar 

  25. Chernoff, Y. O. et al. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35, 865–876 (2000)

    Article  CAS  Google Scholar 

  26. Kushnirov, V. V., Kochneva-Pervukhova, N. V., Chechenova, M. B., Frolova, N. S. & Ter-Avanesyan, M. D. Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J. 19, 324–331 (2000)

    Article  CAS  Google Scholar 

  27. Nakayashiki, T., Ebihara, K., Bannai, H. & Nakamura, Y. Yeast [PSI+] “prions” that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Mol. Cell 7, 1121–1130 (2001)

    Article  CAS  Google Scholar 

  28. Resende, C. et al. The Candida albicans Sup35p protein (CaSup35p): function, prion-like behaviour and an associated polyglutamine length polymorphism. Microbiology 148, 1049–1060 (2002)

    Article  CAS  Google Scholar 

  29. Scott, M. et al. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59, 847–857 (1989)

    Article  CAS  Google Scholar 

  30. Prusiner, S. B. et al. Transgenic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686 (1990)

    Article  CAS  Google Scholar 

  31. Collinge, J. et al. Unaltered susceptibility to BSE in transgenic mice expressing human prion protein. Nature 378, 779–783 (1995)

    Article  ADS  CAS  Google Scholar 

  32. Supattapone, S. et al. Prion protein of 106 residues creates an artificial transmission barrier for prion replication in transgenic mice. Cell 96, 869–878 (1999)

    Article  CAS  Google Scholar 

  33. Bruce, M. et al. Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Phil. Trans. R. Soc. Lond. B 343, 405–411 (1994)

    Article  ADS  CAS  Google Scholar 

  34. Tanaka, M., Chien, P., Yonekura, K. & Weissman, J. S. Mechanism of cross-species prion transmission: An infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121, 49–62 (2005)

    Article  CAS  Google Scholar 

  35. Hill, A. F. et al. The same prion strain causes vCJD and BSE. Nature 389, 448–450 (1997)

    Article  ADS  CAS  Google Scholar 

  36. Chien, P., DePace, A. H., Collins, S. R. & Weissman, J. S. Generation of prion transmission barriers by mutational control of amyloid conformations. Nature 424, 948–951 (2003)

    Article  ADS  CAS  Google Scholar 

  37. Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383, 685–690 (1996)

    Article  ADS  CAS  Google Scholar 

  38. Mukhopadhyay, S., Krishnan, R., Lemke, E. A., Lindquist, S. & Deniz, A. A. A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc. Natl Acad. Sci. USA 104, 2649–2654 (2007)

    Article  ADS  CAS  Google Scholar 

  39. Krishnan, R. & Lindquist, S. L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005)

    Article  ADS  CAS  Google Scholar 

  40. Kajava, A. V., Baxa, U., Wickner, R. B. & Steven, A. C. A model for Ure2p prion filaments and other amyloids: the parallel superpleated β-structure. Proc. Natl Acad. Sci. USA 101, 7885–7890 (2004)

    Article  ADS  CAS  Google Scholar 

  41. Shewmaker, F., Wickner, R. B. & Tycko, R. Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc. Natl Acad. Sci. USA 103, 19754–19759 (2006)

    Article  ADS  CAS  Google Scholar 

  42. Ross, E. D., Edskes, H. K., Terry, M. J. & Wickner, R. B. Primary sequence independence for prion formation. Proc. Natl Acad. Sci. USA 102, 12825–12830 (2005)

    Article  ADS  CAS  Google Scholar 

  43. Ross, E. D., Baxa, U. & Wickner, R. B. Scrambled prion domains form prions and amyloid. Mol. Cell. Biol. 24, 7206–7213 (2004)

    Article  CAS  Google Scholar 

  44. DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998)

    Article  CAS  Google Scholar 

  45. King, C. Y. Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J. Mol. Biol. 307, 1247–1260 (2001)

    Article  CAS  Google Scholar 

  46. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000)

    Article  ADS  CAS  Google Scholar 

  47. Glover, J. R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997)

    Article  CAS  Google Scholar 

  48. Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133 (2001)

    Article  CAS  Google Scholar 

  49. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005)

    Article  ADS  CAS  Google Scholar 

  50. Zhao, Z. G., Im, J. S., Lam, K. S. & Lake, D. F. Site-specific modification of a single-chain antibody using a novel glyoxylyl-based labeling reagent. Bioconjugat. Chem. 10, 424–430 (1999)

    Article  CAS  Google Scholar 

  51. Frank, R. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications. J. Immunol. Methods 267, 13–26 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Weissman for providing the CaNM and Sc/Ca NM chimaera plasmids, M. Schutkowski for assistance in designing and preparing the peptide arrays, N. Watson for performing the transmission electron microscope imaging and members of the Lindquist laboratory for helpful discussions. This research was supported by an American Cancer Society Postdoctoral Fellowship (P.M.T.), and grants from the DuPont-MIT Alliance and the NIH. S.L. is an Investigator of the Howard Hughes Medical Institute.

Author Contributions Experimental work was performed by P. Tessier, and the data analysis and writing were conducted by P. Tessier and S. Lindquist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Lindquist.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure S1 and Supplementary Tables S2-S3. (PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tessier, P., Lindquist, S. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447, 556–561 (2007). https://doi.org/10.1038/nature05848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05848

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing