Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bypassing genomic imprinting allows seed development


In developing progeny of mammals the two parental genomes are differentially expressed according to imprinting marks, and embryos with only a uniparental genetic contribution die1,2,3. Gene expression that is dependent on the parent of origin has also been observed in the offspring of flowering plants, and mutations in the imprinting machinery lead to embryonic lethality, primarily affecting the development of the endosperm—a structure in the seed that nourishes the embryo, analogous to the function of the mammalian placenta4. Here we have generated Arabidopsis thaliana seeds in which the endosperm is of uniparental, that is, maternal, origin. We demonstrate that imprinting in developing seeds can be bypassed and viable albeit smaller seedlings can develop from seeds lacking a paternal contribution to the endosperm. Bypassing is only possible if the mother is mutant for any of the FIS-class genes, which encode Polycomb group chromatin-modifying factors. Thus, these data provide functional evidence that the action of the FIS complex balances the contribution of the paternal genome. As flowering plants have evolved a special reproduction system with a parallel fusion of two female with two male gametes, our findings support the hypothesis that only with the evolution of double fertilization did the action of the FIS genes become a requirement for seed development. Furthermore, our data argue for a gametophytic origin of endosperm in flowering plants, thereby supporting a hypothesis raised in 1900 by Eduard Strasburger.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Rescue of seed abortion in mea -/-  ×  cdka;1–yfp +/- crosses.
Figure 2: The small mea -/-  ×  cdka;1 +/- seeds develop with a uniparental diploid endosperm.
Figure 3: Quantitative real-time PCR monitoring PHE1 expression in mea-/-×  cdka;1+/- seeds.


  1. Barton, S. C., Surani, M. A. & Norris, M. L. Role of paternal and maternal genomes in mouse development. Nature 311, 374– 376 (1984)

    ADS  CAS  Article  Google Scholar 

  2. Surani, M. A., Barton, S. C. & Norris, M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548– 550 (1984)

    ADS  CAS  Article  Google Scholar 

  3. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179– 183 (1984)

    CAS  Article  Google Scholar 

  4. Berger, F. Imprinting—a green variation. Science 303, 483– 485 (2004)

    CAS  Article  Google Scholar 

  5. Scott, R. J., Spielman, M., Bailey, J. & Dickinson, H. G. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125, 3329– 3341 (1998)

    CAS  PubMed  Google Scholar 

  6. Lin, B.-Y. Association of endosperm reduction with parental imprinting in maize. Genetics 100, 475– 486 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin, B.-Y. Ploidy barrier to endosperm development in maize. Genetics 107, 103– 115 (1984)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Haig, D. & Westoby, M. Parent-specific gene expression and the triploid endosperm. Am. Nat. 134, 147– 155 (1989)

    Article  Google Scholar 

  9. Haig, D. & Westoby, M. Genomic imprinting in endosperm: its effects on seed development in crosses between species and between different ploidies of the same species, and its implications for the evolution of apomixis. Phil. Trans. R. Soc. Lond. B 333, 1– 13 (1991)

    ADS  Article  Google Scholar 

  10. Kohler, C. & Grossniklaus, U. Seed development and genomic imprinting in plants. Prog. Mol. Subcell. Biol. 38, 237– 262 (2005)

    Article  Google Scholar 

  11. Guitton, A. E. & Berger, F. Control of reproduction by Polycomb group complexes in animals and plants. Int. J. Dev. Biol. 49, 707– 716 (2005)

    CAS  Article  Google Scholar 

  12. Autran, D., Huanca-Mamani, W. & Vielle-Calzada, J. P. Genomic imprinting in plants: the epigenetic version of an Oedipus complex. Curr. Opin. Plant Biol. 8, 19– 25 (2005)

    CAS  Article  Google Scholar 

  13. Gehring, M., Choi, Y. & Fischer, R. L. Imprinting and seed development. Plant Cell 16 (Suppl). S203– S213 (2004)

    CAS  Article  Google Scholar 

  14. Scott, R. J. & Spielman, M. Genomic imprinting in plants and mammals: how life history constrains convergence. Cytogenet. Genome Res. 113, 53– 67 (2006)

    CAS  Article  Google Scholar 

  15. Jullien, P. E., Katz, A., Oliva, M., Ohad, N. & Berger, F. Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr. Biol. 16, 486– 492 (2006)

    CAS  Article  Google Scholar 

  16. Baroux, C., Gagliardini, V., Page, D. R. & Grossniklaus, U. Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes Dev. 20, 1081– 1086 (2006)

    CAS  Article  Google Scholar 

  17. Gehring, M. et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124, 495– 506 (2006)

    CAS  Article  Google Scholar 

  18. Chaudhury, A. M. et al. Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 94, 4223– 4228 (1997)

    ADS  CAS  Article  Google Scholar 

  19. Grossniklaus, U., Vielle-Calzada, J. P., Hoeppner, M. A. & Gagliano, W. B. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280, 446– 450 (1998)

    ADS  CAS  Article  Google Scholar 

  20. Ohad, N. et al. A mutation that allows endosperm development without fertilization. Proc. Natl Acad. Sci. USA 93, 5319– 5324 (1996)

    ADS  CAS  Article  Google Scholar 

  21. Kiyosue, T. et al. Control of fertilization-independent endosperm development by the MEDEA Polycomb gene in Arabidopsis. Proc. Natl Acad. Sci. USA 96, 4186– 4191 (1999)

    ADS  CAS  Article  Google Scholar 

  22. Faure, J. E., Mogensen, H. L., Dumas, C., Lorz, H. & Kranz, E. Karyogamy after electrofusion of single egg and sperm cell protoplasts from maize: cytological evidence and time course. Plant Cell 5, 747– 755 (1993)

    Article  Google Scholar 

  23. Nowack, M. K. et al. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nature Genet. 38, 63– 67 (2006)

    ADS  CAS  Article  Google Scholar 

  24. Ingouff, M., Haseloff, J. & Berger, F. Polycomb group genes control developmental timing of endosperm. Plant J. 42, 663– 674 (2005)

    CAS  Article  Google Scholar 

  25. Kohler, C., Page, D. R., Gagliardini, V. & Grossniklaus, U. The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nature Genet. 37, 28– 30 (2005)

    Article  Google Scholar 

  26. Kohler, C. et al. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 17, 1540– 1553 (2003)

    Article  Google Scholar 

  27. Maheshwari, P. & Singh, H. The female gametophyte of gymnosperms. Biological Review 42, 88– 130 (1967)

    Article  Google Scholar 

  28. Sargant, E. Recent work on the results of fertilization in Angiosperms. Ann. Bot. (Lond.) 14, 689– 712 (1900)

    Article  Google Scholar 

  29. Strasburger, E. Einige Bemerkungen zur Frage nach der “doppelten Befruchtung” bei den Angiospermen. Botanische Zeitung 58, 294– 315 (1900)

    Google Scholar 

  30. Chaudhury, A. M. et al. Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 94, 4223– 4228 (1997)

    ADS  CAS  Article  Google Scholar 

  31. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001)

    CAS  Article  Google Scholar 

  32. Grini, P. E., Jurgens, G. & Hulskamp, M. Embryo and endosperm development is disrupted in the female gametophytic capulet mutants of Arabidopsis. Genetics 162, 1911– 1925 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sessions, A., Weigel, D. & Yanofsky, M. F. The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J. 20, 259– 263 (1999)

    CAS  Article  Google Scholar 

  34. Lukowitz, W., Mayer, U. & Jurgens, G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84, 61– 71 (1996)

    CAS  Article  Google Scholar 

  35. Wersto, R. P. et al. Doublet discrimination in DNA cell-cycle analysis. Cytometry 46, 296– 306 (2001)

    CAS  Article  Google Scholar 

Download references


The authors thank F. Berger, E. Erkenbrack, C. Köhler, M. Koornneef and J. Larkin for critical reading and helpful comments on the manuscript. We are grateful to F. Berger for providing mutant and marker lines used in this study. We thank A. Chaudhury for the homozygous mea (fis1) mutant line. For the in situ hybridization analyses, we thank B. Sæther at NARC, a part of the Norwegian Research Council National Programme for Research in Functional Genomics (FUGE). We thank D. Falkenhahn for embedding and thick-sectioning for the laser dissection microscopy. We are grateful to H. Barbier and M. Reymond for their help with statistical analyses. M.K.N. and N.D. are fellows of the International Max Planck Research School (IMPRS). P.E.G. and R.S. were supported by a grant from the Norwegian Research Council. This work was supported by a grant of the Volkswagen-Stiftung to A.S.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Arp Schnittger.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4 with Legends and Supplementary Tables 1-2. (PDF 3683 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nowack, M., Shirzadi, R., Dissmeyer, N. et al. Bypassing genomic imprinting allows seed development. Nature 447, 312–315 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing