Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hybrid speciation

Abstract

Botanists have long believed that hybrid speciation is important, especially after chromosomal doubling (allopolyploidy). Until recently, hybridization was not thought to play a very constructive part in animal evolution. Now, new genetic evidence suggests that hybrid speciation, even without polyploidy, is more common in plants and also animals than we thought.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hybridization and the adaptive landscape.

References

  1. Lotsy, J. P. Evolution by Means of Hybridization (Martinus Nijhoff, The Hague, 1916)

    Book  Google Scholar 

  2. Mayr, E. Animal Species and Evolution (Harvard Univ. Press, Cambridge, Massachusetts, 1963)

    Book  Google Scholar 

  3. Stebbins, G. L. Processes of Organic Evolution (Prentice-Hall, Englewood Cliffs, New Jersey, 1971)

  4. Grant, V. Plant Speciation (Columbia Univ. Press, New York, 1981)

    Book  Google Scholar 

  5. Barton, N. H. The role of hybridization in evolution. Mol. Ecol. 10, 551–568 (2001). Medline

    CAS  Article  Google Scholar 

  6. Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, Sunderland, Massachusetts, 2004)

    Google Scholar 

  7. Anderson, E. & Stebbins, G. L. Hybridization as an evolutionary stimulus. Evolution 8, 378–388 (1954)

    Article  Google Scholar 

  8. Arnold, M. L. Natural Hybridization and Evolution (Oxford Univ. Press, Oxford, 1997)

    Google Scholar 

  9. Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).

    Google Scholar 

  10. Dowling, T. E. & Secor, C. L. The role of hybridization and introgression in the diversification of animals. Annu. Rev. Ecol. Syst. 28, 593–620 (1997)

    Article  Google Scholar 

  11. Bullini, L. Origin and evolution of animal hybrid species. Trends Ecol. Evol. 9, 422–426 (1994)

    CAS  Article  Google Scholar 

  12. Grant, P. R., Grant, B. R. & Petren, K. Hybridization in the recent past. Am. Nat. 166, 56–57 (2005).

    Article  Google Scholar 

  13. Mallet, J. A species definition for the modern synthesis. Trends Ecol. Evol. 10, 294–299 (1995)

    CAS  Article  Google Scholar 

  14. Butlin, R. Speciation by reinforcement. Trends Ecol. Evol. 2, 8–12 (1987)

    CAS  Article  Google Scholar 

  15. Ortíz-Barrientos, D., Counterman, B. A. & Noor, M. A. F. The genetics of speciation by reinforcement. PLoS Biol. 2, e416 (2004)

    Article  Google Scholar 

  16. Tunner, H. G. & Nopp, H. Heterosis in the common European water frog. Naturwissenschaften 66, 268–269 (1979).

    ADS  CAS  Article  Google Scholar 

  17. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon Press, Oxford, 1930)

    Book  Google Scholar 

  18. Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).

    Article  Google Scholar 

  19. Husband, B. C. Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proc. R. Soc. Lond. B 267, 217–223 (2000)

    CAS  Article  Google Scholar 

  20. Wright, S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. XI Int. Congr. Genet. Hague 1, 356–366 (1932)

    Google Scholar 

  21. Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000).

  22. Ramsey, J. & Schemske, D. W. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–639 (2002)

    Article  Google Scholar 

  23. Astaurov, B. L. Experimental polyploidy in animals. Annu. Rev. Genet. 3, 99–126 (1969)

    Article  Google Scholar 

  24. Muller, H. J. Why polyploidy is rarer in animals than in plants. Am. Nat. 59, 346–353 (1925)

    Article  Google Scholar 

  25. Mable, B. K. ‘Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biol. J. Linn. Soc. 82, 453–466 (2004)

    Article  Google Scholar 

  26. Soltis, D. E., Soltis, P. S. & Tate, J. A. Advances in the study of polyploidy since plant speciation. New Phytol. 161, 173–191 (2004)

    CAS  Article  Google Scholar 

  27. Brochmann, C. et al. Polyploidy in arctic plants. Biol. J. Linn. Soc. 82, 521–536 (2004)

    Article  Google Scholar 

  28. Abbott, R. J. & Lowe, A. J. Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biol. J. Linn. Soc. 82, 467–474 (2004)

    Article  Google Scholar 

  29. Ainouche, M. L., Baumel, A. & Salmon, A. Spartina anglica C. E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol. J. Linn. Soc. 82, 475–484 (2004)

    Article  Google Scholar 

  30. Buerkle, C. A., Morris, R. J., Asmussen, M. A. & Rieseberg, L. H. The likelihood of homoploid hybrid speciation. Heredity 84, 441–451 (2000).

    Article  Google Scholar 

  31. Rieseberg, L. H. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 28, 359–389 (1997)

    Article  Google Scholar 

  32. Rieseberg, L. H., Raymond, O., Rosenthal, D. M., Lai, Z. & Livingstone, K. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301, 1211–1216 (2003).

    ADS  CAS  Article  Google Scholar 

  33. Gross, B. L. & Rieseberg, L. H. The ecological genetics of homoploid hybrid speciation. J. Hered. 96, 241–252 (2005).

  34. Nolte, A. W., Freyhof, J., Stemshorn, K. C. & Tautz, D. An invasive lineage of sculpins, Cottus sp. (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proc. R. Soc. Lond. B 272, 2379–2387 (2005)

    Article  Google Scholar 

  35. DeMarais, B. D., Dowling, T. E., Douglas, M. E., Minckley, W. L. & Marsh, P. C. Origin of Gila seminuda (Teleostei: Cyprinidae) through introgressive hybridization: implications for evolution and conservation. Proc. Natl Acad. Sci. USA 89, 2747–2751 (1992).

    ADS  CAS  Article  Google Scholar 

  36. Gompert, Z., Fordyce, J. A., Forister, M., Shapiro, A. M. & Nice, C. C. Homoploid hybrid speciation in an extreme habitat. Science 314, 1923–1925 (2006).

    ADS  CAS  Article  Google Scholar 

  37. Schwarz, D., Matta, B. M., Shakir-Botteri, N. L. & McPheron, B. A. Host shift to an invasive plant triggers rapid animal hybrid speciation. Nature 436, 546–549 (2005).

    ADS  CAS  Article  Google Scholar 

  38. Mavárez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature 441, 868–871 (2006).

    ADS  Article  Google Scholar 

  39. Meyer, A., Salzburger, W. & Schartl, M. Hybrid origin of a swordtail species (Teleostei: Xiphophorus clemenciae) driven by sexual selection. Mol. Ecol. 15, 721–730 (2006).

    CAS  Article  Google Scholar 

  40. Labandeira, C. C. & Sepkoski, J. J. Insect diversity in the fossil record. Science 261, 310–315 (1993).

    ADS  CAS  Article  Google Scholar 

  41. Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S. & Reich, D. Genetic evidence for complex speciation of humans and chimpanzees. Nature 441, 1103–1108 (2006).

    ADS  CAS  Article  Google Scholar 

  42. Evans, P. D., Mekel-Bobrov, N., Vallender, E. J., Hudson, R. R. & Lahn, B. T. Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage. Proc. Natl Acad. Sci. USA 103, 18178–18183 (2006).

    ADS  CAS  Article  Google Scholar 

  43. Barton, N. H. How did the human species form? Curr. Biol. 16, R647–R650 (2006).

    CAS  Article  Google Scholar 

  44. Seehausen, O., van Alphen, J. J. M. & Witte, F. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277, 1808–1811 (1997)

    CAS  Article  Google Scholar 

  45. Grant, B. R. & Grant, P. R. High survival of Darwin’s finch hybrids — effects of beak morphology and diets. Ecology 77, 500–509 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

I thank C. Brochmann, K. Dasmahapatra, B. Husband, S. Knapp, M. Linares, J. Mavárez, A. Meyer, P. Nosil, S. Otto, C. Salazar and S. Turelli for discussions and comments. The work was supported, in part, by grants from NERC and the DEFRA Darwin Initiative programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Mallet.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mallet, J. Hybrid speciation. Nature 446, 279–283 (2007). https://doi.org/10.1038/nature05706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05706

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing