Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models


The striatum is a major forebrain nucleus that integrates cortical and thalamic afferents and forms the input nucleus of the basal ganglia1,2. Striatal projection neurons target the substantia nigra pars reticulata (direct pathway) or the lateral globus pallidus (indirect pathway). Imbalances between neural activity in these two pathways have been proposed to underlie the profound motor deficits observed in Parkinson's disease and Huntington's disease3,4. However, little is known about differences in cellular and synaptic properties in these circuits. Indeed, current hypotheses suggest that these cells express similar forms of synaptic plasticity5,6. Here we show that excitatory synapses onto indirect-pathway medium spiny neurons (MSNs) exhibit higher release probability and larger N-methyl-d-aspartate receptor currents than direct-pathway synapses. Moreover, indirect-pathway MSNs selectively express endocannabinoid-mediated long-term depression (eCB-LTD), which requires dopamine D2 receptor activation. In models of Parkinson's disease, indirect-pathway eCB-LTD is absent but is rescued by a D2 receptor agonist or inhibitors of endocannabinoid degradation. Administration of these drugs together in vivo reduces parkinsonian motor deficits, suggesting that endocannabinoid-mediated depression of indirect-pathway synapses has a critical role in the control of movement. These findings have implications for understanding the normal functions of the basal ganglia, and also suggest approaches for the development of therapeutic drugs for the treatment of striatal-based brain disorders.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Presynaptic properties of direct-pathway and indirect-pathway synapses on striatal MSNs.
Figure 2: Postsynaptic properties of direct-pathway and indirect-pathway synapses.
Figure 3: Endocannabinoid-mediated LTD is restricted to indirect-pathway synapses.
Figure 4: Pharmacological rescue of indirect-pathway LTD and motor deficits in animal models of Parkinson's disease.


  1. Wilson, C. J. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 329–375 (Oxford University Press, New York, 1998)

    Google Scholar 

  2. Bolam, J. P., Hanley, J. J., Booth, P. A. & Bevan, M. D. Synaptic organisation of the basal ganglia. J. Anat. 196, 527–542 (2000)

    Article  CAS  Google Scholar 

  3. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989)

    Article  CAS  Google Scholar 

  4. Graybiel, A. M. The basal ganglia. Curr. Biol. 10, R509–R511 (2000)

    Article  CAS  Google Scholar 

  5. Gerdeman, G. L., Partridge, J. G., Lupica, C. R. & Lovinger, D. M. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 26, 184–192 (2003)

    Article  CAS  Google Scholar 

  6. Wang, Z. et al. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50, 443–452 (2006)

    Article  CAS  Google Scholar 

  7. Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990)

    Article  ADS  CAS  Google Scholar 

  8. Obeso, J. A. et al. Pathophysiologic basis of surgery for Parkinson’s disease. Neurology 55, S7–S12 (2000)

    Article  CAS  Google Scholar 

  9. Mallet, N., Ballion, B., Le Moine, C. & Gonon, F. Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J. Neurosci. 26, 3875–3884 (2006)

    Article  CAS  Google Scholar 

  10. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Lobo, M., Karsten, S., Gray, M., Geschwind, D. & Yang, X. FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nature Neurosci. 9, 443–452 (2006)

    Article  CAS  Google Scholar 

  12. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002)

    Article  CAS  Google Scholar 

  13. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999)

    CAS  Google Scholar 

  14. Calabresi, P., Maj, R., Pisani, A., Mercuri, N. B. & Bernardi, G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12, 4224–4233 (1992)

    Article  CAS  Google Scholar 

  15. Gerdeman, G. L., Ronesi, J. & Lovinger, D. M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nature Neurosci. 5, 446–451 (2002)

    Article  CAS  Google Scholar 

  16. Kreitzer, A. C. & Malenka, R. C. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J. Neurosci. 25, 10537–10545 (2005)

    Article  CAS  Google Scholar 

  17. Tang, K., Low, M. J., Grandy, D. K. & Lovinger, D. M. Dopamine-dependent synaptic plasticity in striatum during in vivo development. Proc. Natl Acad. Sci. USA 98, 1255–1260 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Calabresi, P. et al. Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J. Neurosci. 17, 4536–4544 (1997)

    Article  CAS  Google Scholar 

  19. Giuffrida, A. et al. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neurosci. 2, 358–363 (1999)

    Article  CAS  Google Scholar 

  20. Betarbet, R., Sherer, T. B. & Greenamyre, J. T. Animal models of Parkinson’s disease. BioEssays 24, 308–318 (2002)

    Article  CAS  Google Scholar 

  21. Schwarting, R. K. & Huston, J. P. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog. Neurobiol. 49, 215–266 (1996)

    Article  CAS  Google Scholar 

  22. Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nature Med. 9, 76–81 (2003)

    Article  CAS  Google Scholar 

  23. Di Marzo, V., Hill, M. P., Bisogno, T., Crossman, A. R. & Brotchie, J. M. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J. 14, 1432–1438 (2000)

    CAS  PubMed  Google Scholar 

  24. Gubellini, P. et al. Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J. Neurosci. 22, 6900–6907 (2002)

    Article  CAS  Google Scholar 

  25. Jenner, P. Dopamine agonists, receptor selectivity and dyskinesia induction in Parkinson’s disease. Curr. Opin. Neurol. 16, (Suppl. 1)S3–S7 (2003)

    Article  CAS  Google Scholar 

  26. Makara, J. K. et al. Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nature Neurosci. 8, 1139–1141 (2005)

    Article  CAS  Google Scholar 

  27. Saario, S. M. et al. URB754 has no effect on the hydrolysis or signaling capacity of 2-AG in the rat brain. Chem. Biol. 13, 811–814 (2006)

    Article  CAS  Google Scholar 

  28. Baik, J. H. et al. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377, 424–428 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Zimmer, A., Zimmer, A. M., Hohmann, A. G., Herkenham, M. & Bonner, T. I. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl Acad. Sci. USA 96, 5780–5785 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Compton, D. R., Aceto, M. D., Lowe, J. & Martin, B. R. In vivo characterization of a specific cannabinoid receptor antagonist (SR141716A): inhibition of delta 9-tetrahydrocannabinol-induced responses and apparent agonist activity. J. Pharmacol. Exp. Ther. 277, 586–594 (1996)

    CAS  PubMed  Google Scholar 

Download references


We thank W. Regehr, B. Sabatini, D. Lovinger, D. Piomelli, J. Surmeier and members of the Malenka laboratory for helpful discussions, X. W. Yang for providing BAC-transgenic mice generated by the GENSAT project, M. Xu-Friedman for providing custom Igor acquisition software, and S. Y. Lee and X. Cai for technical help. This work was supported by a Ruth L. Kirchenstein Fellowship (A.C.K.), a grant from the National Institutes of Health (R.C.M.), and a National Parkinson Foundation Individual Research Grant (R.C.M. and A.C.K.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Robert C. Malenka.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-5 with Legends and additional references. (PDF 625 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kreitzer, A., Malenka, R. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643–647 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing