Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter

Abstract

Secondary transporters are integral membrane proteins that catalyse the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of GltPh, a sodium (Na+)-coupled aspartate transporter, defining sites for aspartate, two sodium ions and d,l-threo-β-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound α-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glt Ph is an aspartate-specific sodium-driven transporter.
Figure 2: HP2 is the extracellular gate.
Figure 3: Binding of ligands and sodium to GltPh.
Figure 4: Sodium-binding sites in GltPh.
Figure 5: Sodium-binding motif.
Figure 6: Schematic mechanism illustrated by a diagram of a single subunit.

Similar content being viewed by others

References

  1. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 2001)

    Google Scholar 

  2. Läuger, P. Electrogenic Ion Pumps (Sinauer Associates, Sunderland, Massachusetts, 1991)

    Google Scholar 

  3. Quick, M. W. Transmembrane Transporters (Wiley-Liss, Hoboken, New Jersey, 2002)

    Book  Google Scholar 

  4. Sobczak, I. & Lolkema, J. S. Structural and mechanistic diversity of secondary transporters. Curr. Opin. Microbiol. 8, 161–167 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Chen, N. H., Reith, M. E. & Quick, M. W. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch. 447, 519–531 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Wright, E. M. & Turk, E. The sodium/glucose cotransport family SLC5. Pflugers Arch. 447, 510–518 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Wilson, T. H. & Ding, P. Z. Sodium-substrate cotransport in bacteria. Biochim. Biophys. Acta 1505, 121–130 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Grewer, C. & Rauen, T. Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J. Membr. Biol. 203, 1–20 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slotboom, D. J., Konings, W. N. & Lolkema, J. S. Structural features of the glutamate transporter family. Microbiol. Mol. Biol. Rev. 63, 293–307 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kanner, B. I. & Bendahan, A. Binding order of substrates to the sodium and potassium ion coupled L-glutamatic acid transporter from rat brain. Biochemistry 21, 6327–6330 (1982)

    Article  CAS  PubMed  Google Scholar 

  11. Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Levy, L. M., Warr, O. & Attwell, D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci. 18, 9620–9628 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Grewer, C. et al. Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44, 11913–11923 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Koch, H. P. & Larsson, H. P. Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters. J. Neurosci. 25, 1730–1736 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature 437, 215–223 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Grunewald, M., Bendahan, A. & Kanner, B. I. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron 21, 623–632 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. Slotboom, D. J., Lolkema, J. S. & Konings, W. N. Membrane topology of the C-terminal half of the neuronal, glial, and bacterial glutamate transporter family. J. Biol. Chem. 271, 31317–31321 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Seal, R. P. & Amara, S. G. A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation. Neuron 21, 1487–1498 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Slotboom, D. J., Sobczak, I., Konings, W. N. & Lolkema, J. S. A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop. Proc. Natl Acad. Sci. USA 96, 14282–14287 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grunewald, M. & Kanner, B. I. The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate. J. Biol. Chem. 275, 9684–9689 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Slotboom, D. J., Konings, W. N. & Lolkema, J. S. Cysteine-scanning mutagenesis reveals a highly amphipathic, pore-lining membrane-spanning helix in the glutamate transporter GltT. J. Biol. Chem. 276, 10775–10781 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Grunewald, M., Menaker, D. & Kanner, B. I. Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1. J. Biol. Chem. 277, 26074–26080 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Shimamoto, K. et al. DL-threo-β-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol. Pharmacol. 53, 195–201 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Kanner, B. I. & Schuldiner, S. Mechanism of transport and storage of neurotransmitters. CRC Crit. Rev. Biochem. 22, 1–38 (1987)

    Article  CAS  PubMed  Google Scholar 

  26. Nicholls, D. & Attwell, D. The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11, 462–468 (1990)

    Article  PubMed  Google Scholar 

  27. Arriza, J. L. et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14, 5559–5569 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Slotboom, D. J., Konings, W. N. & Lolkema, J. S. Glutamate transporters combine transporter- and channel-like features. Trends Biochem. Sci. 26, 534–539 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Engelke, T., Jording, D., Kapp, D. & Pühler, A. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. J. Bacteriol. 171, 5551–5560 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yurgel, S. N. & Kahn, M. L. Sinorhizobium meliloti dctA mutants with partial ability to transport dicarboxylic acids. J. Bacteriol. 187, 1161–1172 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shafqat, S. et al. Cloning and expression of a novel Na+-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J. Biol. Chem. 268, 15351–15355 (1993)

    CAS  PubMed  Google Scholar 

  32. Arriza, J. L. et al. Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter family. J. Biol. Chem. 268, 15329–15332 (1993)

    CAS  PubMed  Google Scholar 

  33. Ogawa, W., Kim, Y.-M., Mizushima, T. & Tsuchiya, T. Cloning and expression of the gene for the Na+-coupled serine transporter from Escherichia coli and characteristics of the transporter. J. Bacteriol. 180, 6749–6752 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zerangue, N., Arriza, J. L., Amara, S. G. & Kavanaugh, M. P. Differential modulation of human glutamate transporter subtypes by arachidonic acid. J. Biol. Chem. 270, 6433–6435 (1995)

    Article  CAS  PubMed  Google Scholar 

  35. Kanner, B. I. & Sharon, I. Active transport of L-glutamate by membrane vesicles isolated from rat brain. Biochemistry 17, 3949–3953 (1978)

    Article  CAS  PubMed  Google Scholar 

  36. Mudring, A.-V. & Rieger, F. Lone pair effect in thallium(I) macrocyclic compounds. Inorg. Chem. 44, 6240–6243 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Tao, Z., Zhang, Z. & Grewer, C. Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate carrier EAAC1. J. Biol. Chem. 281, 10263–10272 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Kanner, B. I. & Borre, L. The dual-function glutamate transporters: structure and molecular characterization of the substrate binding sites. Biochim. Biophys. Acta 1555, 92–95 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. Zarbiv, R., Grunewald, M., Kavanaugh, M. P. & Kanner, B. I. Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue. J. Biol. Chem. 273, 14231–14237 (1998)

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y. & Kanner, B. I. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter. Proc. Natl Acad. Sci. USA 96, 1710–1715 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brocke, L., Bendahan, A., Grunewald, M. & Kanner, B. I. Proximity of two oppositely oriented reentrant loops in the glutamate transporter GLT-1 indentified by paired cysteine mutagenesis. J. Biol. Chem. 277, 3985–3992 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. Gaillard, I., Slotboom, D. J., Knol, J., Lolkema, J. S. & Konings, W. N. Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus.. Biochemistry 35, 6150–6156 (1996)

    Article  CAS  PubMed  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  44. CCP4 Project. N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  45. Kleywegt, G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr. D 52, 842–857 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Mindell for support, and B. Hille and R. MacKinnon for constructive criticism. X-ray diffraction data were measured at beamlines X4A and X29 at the National Synchrotron Light Source and 8.2.2 at the Advanced Light Source. This work was supported by a National Research Service Award postdoctoral fellowship (D.Y.) and by the National Institutes of Health (E.G). E.G. is an Investigator with the Howard Hughes Medical Institute.

The coordinates for the lithium-bound native (NAT), TBOA-bound (TB) and sodium-bound (NA) states are deposited in the Protein Data Bank under accession codes 2NWL, 2NWW and 2NWX, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gouaux.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Table S1 and Supplementary Figures S1-S5. (PDF 14807 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boudker, O., Ryan, R., Yernool, D. et al. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007). https://doi.org/10.1038/nature05455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05455

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing