Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The POT1–TPP1 telomere complex is a telomerase processivity factor


Telomeres were originally defined as chromosome caps that prevent the natural ends of linear chromosomes from undergoing deleterious degradation and fusion events. POT1 (protection of telomeres) protein binds the single-stranded G-rich DNA overhangs at human chromosome ends and suppresses unwanted DNA repair activities. TPP1 is a previously identified binding partner of POT1 that has been proposed to form part of a six-protein shelterin complex at telomeres. Here, the crystal structure of a domain of human TPP1 reveals an oligonucleotide/oligosaccharide-binding fold that is structurally similar to the β-subunit of the telomere end-binding protein of a ciliated protozoan, suggesting that TPP1 is the missing β-subunit of human POT1 protein. Telomeric DNA end-binding proteins have generally been found to inhibit rather than stimulate the action of the chromosome end-replicating enzyme, telomerase. In contrast, we find that TPP1 and POT1 form a complex with telomeric DNA that increases the activity and processivity of the human telomerase core enzyme. We propose that POT1–TPP1 switches from inhibiting telomerase access to the telomere, as a component of shelterin, to serving as a processivity factor for telomerase during telomere extension.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: TPP1 binds to the POT1–ssDNA complex and enhances the POT1–ssDNA interaction.
Figure 2: The POT1–TPP1 complex binds to the single-stranded telomeric overhang with 3′ end preference.
Figure 3: The crystal structure of TPP1-OB indicates that TPP1 is the homologue of O. nova TEBPβ.
Figure 4: The POT1–TPP1 complex functions as a telomerase processivity factor.


  1. Blackburn, E. H. Switching and signaling at the telomere. Cell 106, 661–673 (2001)

    CAS  Article  Google Scholar 

  2. Cech, T. R. Beginning to understand the end of the chromosome. Cell 116, 273–279 (2004)

    CAS  Article  Google Scholar 

  3. Shay, J. W. & Wright, W. E. Telomerase: a target for cancer therapeutics. Cancer Cell 2, 257–265 (2002)

    CAS  Article  Google Scholar 

  4. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995)

    ADS  CAS  Article  Google Scholar 

  5. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Genet. 17, 231–235 (1997)

    CAS  Article  Google Scholar 

  6. Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Baumann, P., Podell, E. & Cech, T. R. Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol. Cell. Biol. 22, 8079–8087 (2002)

    CAS  Article  Google Scholar 

  8. Hockemeyer, D., Daniels, J. P., Takai, H. & de Lange, T. Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell 126, 63–77 (2006)

    CAS  Article  Google Scholar 

  9. Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126, 49–62 (2006)

    CAS  Article  Google Scholar 

  10. Lei, M., Podell, E. R. & Cech, T. R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nature Struct. Mol. Biol. 11, 1223–1229 (2004)

    CAS  Article  Google Scholar 

  11. Loayza, D. & de Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003)

    ADS  CAS  Article  Google Scholar 

  12. Ye, J. Z. et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 18, 1649–1654 (2004)

    CAS  Article  Google Scholar 

  13. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nature Cell Biol. 6, 673–680 (2004)

    CAS  Article  Google Scholar 

  14. Houghtaling, B. R., Cuttonaro, L., Chang, W. & Smith, S. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr. Biol. 14, 1621–1631 (2004)

    CAS  Article  Google Scholar 

  15. Kim, S. H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nature Genet. 23, 405–412 (1999)

    CAS  Article  Google Scholar 

  16. Liu, D. O’connor, M. S., Qin, J. & Songyang, Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 279, 51338–51342 (2004)

    CAS  Article  Google Scholar 

  17. Ye, J. Z. et al. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J. Biol. Chem. 279, 47264–47271 (2004)

    CAS  Article  Google Scholar 

  18. O’Connor, M. S., Safari, A., Xin, H., Liu, D. & Songyang, Z. A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc. Natl Acad. Sci. USA 103, 11874–11879 (2006)

    ADS  Article  Google Scholar 

  19. Kim, S. H. et al. TIN2 mediates functions of TRF2 at human telomeres. J. Biol. Chem. 279, 43799–43804 (2004)

    CAS  Article  Google Scholar 

  20. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000)

    CAS  Article  Google Scholar 

  21. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005)

    CAS  Article  Google Scholar 

  22. Hicke, B. J., Celander, D. W., MacDonald, G. H., Price, C. M. & Cech, T. R. Two versions of the gene encoding the 41-kilodalton subunit of the telomere binding protein of Oxytricha nova. Proc. Natl Acad. Sci. USA 87, 1481–1485 (1990)

    ADS  CAS  Article  Google Scholar 

  23. Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M., Ruggles, J. A. & Schultz, S. C. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963–974 (1998)

    CAS  Article  Google Scholar 

  24. Gray, J. T., Celander, D. W., Price, C. M. & Cech, T. R. Cloning and expression of genes for the Oxytricha telomere-binding protein: specific subunit interactions in the telomeric complex. Cell 67, 807–814 (1991)

    CAS  Article  Google Scholar 

  25. Loayza, D., Parsons, H., Donigian, J., Hoke, K. & de Lange, T. DNA binding features of human POT1: a nonamer 5′-TAGGGTTAG-3′ minimal binding site, sequence specificity, and internal binding to multimeric sites. J. Biol. Chem. 279, 13241–13248 (2004)

    CAS  Article  Google Scholar 

  26. Lei, M., Zaug, A. J., Podell, E. R. & Cech, T. R. Switching human telomerase on and off with hPOT1 protein in vitro. J. Biol. Chem. 280, 20449–20456 (2005)

    CAS  Article  Google Scholar 

  27. Fang, G. W. & Cech, T. R. Molecular cloning of telomere-binding protein genes from Stylonychia mytilis. Nucleic Acids Res. 19, 5515–5518 (1991)

    CAS  Article  Google Scholar 

  28. Fang, G., Gray, J. T. & Cech, T. R. Oxytricha telomere-binding protein: separable DNA-binding and dimerization domains of the α-subunit. Genes Dev. 7, 870–882 (1993)

    CAS  Article  Google Scholar 

  29. Fang, G. & Cech, T. R. The β subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 74, 875–885 (1993)

    CAS  Article  Google Scholar 

  30. Paeschke, K., Simonsson, T., Postberg, J., Rhodes, D. & Lipps, H. J. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nature Struct. Mol. Biol. 12, 847–854 (2005)

    CAS  Article  Google Scholar 

  31. Dietmann, S. & Holm, L. Identification of homology in protein structure classification. Nature Struct. Biol. 8, 953–957 (2001)

    CAS  Article  Google Scholar 

  32. Theobald, D. L., Mitton-Fry, R. M. & Wuttke, D. S. Nucleic acid recognition by OB-fold proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 115–133 (2003)

    CAS  Article  Google Scholar 

  33. Holm, L. & Sander, C. Database algorithm for generating protein backbone and side-chain co-ordinates from a Cα trace application to model building and detection of co-ordinate errors. J. Mol. Biol. 218, 183–194 (1991)

    CAS  Article  Google Scholar 

  34. Chen, J. L. & Greider, C. W. Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility. EMBO J. 22, 304–314 (2003)

    Article  Google Scholar 

  35. Zaug, A. J., Podell, E. R. & Cech, T. R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Natl Acad. Sci. USA 102, 10864–10869 (2005)

    ADS  CAS  Article  Google Scholar 

  36. Kuriyan, J. & O’Donnell, M. Sliding clamps of DNA polymerases. J. Mol. Biol. 234, 915–925 (1993)

    CAS  Article  Google Scholar 

  37. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992)

    CAS  Article  Google Scholar 

  38. Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117, 323–335 (2004)

    CAS  Article  Google Scholar 

Download references


We thank Y. Chen and K. Wan for help at various stages of the project; N. F. Lue for the His-SUMO protein expression vector; Z. Songyang and T. de Lange for TPP1 cDNA; D. Yoder of beamline 23-ID at APS for assistance with data collection; and J. L. Chen and C. W. Greider for the human TERT and TER plasmids. Work in the laboratory of M.L. is supported by the American Cancer Society and the Sidney Kimmel Foundation. E.R.P., A.J.Z. and T.R.C. are supported by the Howard Hughes Medical Institute. Author Contributions F.W. is responsible for the bulk of the experiments; Y.Y. for structural determination of TPP1-OB; P.B. for crystallization of TPP1-OB; E.R.P. and A.J.Z. for the telomerase activity assays and some of the EMSA experiments; and T.R.C. and M.L. contributed to overall design and interpretation of the studies. The atomic coordinates and structure factors of TPP1-OB have been deposited in the RCSB Protein Data Bank with accession code 2146.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ming Lei.

Ethics declarations

Competing interests

The atomic coordinates and structure factors of TPP1-OB have been deposited in the RCSB Protein Data Bank with accession code 2I46. Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains the Supplementary Figures 1–8, Supplementary Methods, Supplementary Table and additional references. The Supplementary Methods describes the detailed methods of protein purification, crystallization, structural determination, and snake-venom phosphodiesterase I digestion assay. (PDF 4673 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, F., Podell, E., Zaug, A. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing