Letter | Published:

Superconductivity in doped cubic silicon

Naturevolume 444pages465468 (2006) | Download Citation



Although the local resistivity of semiconducting silicon in its standard crystalline form can be changed by many orders of magnitude by doping with elements, superconductivity has so far never been achieved. Hybrid devices combining silicon’s semiconducting properties and superconductivity have therefore remained largely underdeveloped. Here we report that superconductivity can be induced when boron is locally introduced into silicon at concentrations above its equilibrium solubility. For sufficiently high boron doping (typically 100 p.p.m.) silicon becomes metallic1. We find that at a higher boron concentration of several per cent, achieved by gas immersion laser doping, silicon becomes superconducting. Electrical resistivity and magnetic susceptibility measurements show that boron-doped silicon (Si:B) made in this way is a superconductor below a transition temperature Tc ≈ 0.35 K, with a critical field of about 0.4 T. Ab initio calculations, corroborated by Raman measurements, strongly suggest that doping is substitutional. The calculated electron–phonon coupling strength is found to be consistent with a conventional phonon-mediated coupling mechanism2. Our findings will facilitate the fabrication of new silicon-based superconducting nanostructures and mesoscopic devices with high-quality interfaces.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Dai, P., Zhang, Y. & Sarachik, M. P. Critical conductivity exponent for Si:B. Phys. Rev. Lett. 66, 1914–1917 (1991)

  2. 2

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

  3. 3

    Hein, R. A., Gibson, J. W., Mazelsky, R., Miller, R. C. & Hulm, J. K. Superconductivity in germanium telluride. Phys. Rev. Lett. 12, 320–322 (1964)

  4. 4

    Schooley, J. F. et al. Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3 . Phys. Rev. Lett. 14, 305–307 (1965)

  5. 5

    Lasbley, A., Granger, R. & Rolland, S. High temperature superconducting behaviour in PbTe-Pb system. Solid State Commun. 13, 1045–1048 (1973)

  6. 6

    Alekseyevsky, N. & Migunov, L. Investigation of metals at temperatures below 1°K. J. Phys. (USSR) 11, 95 (1947)

  7. 7

    Buckel, W. & Wittig, J. Supraleitung von Germanium und Silizium unter hohem Druck. Phys. Lett. 17, 187–188 (1965)

  8. 8

    Stepanov, G. N., Valyanskaya, T. V. & Yakovlev, E. N. Superconductivity of metallic silicon below the pressure of transition to metallic modification. Sov. Phys. Solid State 22, 292–293 (1980)

  9. 9

    Chang, K. J. et al. Superconductivity in high-pressure metallic phases of Si. Phys. Rev. Lett. 54, 2375–2378 (1985)

  10. 10

    Cohen, M. L. Superconductivity in many-valley semiconductors and in semimetals. Phys. Rev. 134, A511–A521 (1964)

  11. 11

    Connétable, D. et al. Superconductivity in doped sp3 semiconductors: The case of the clathrates. Phys. Rev. Lett. 91, 247001 (2003)

  12. 12

    Boeri, L., Kortus, J. & Andersen, O. K. Three-dimensional MgB2-type superconductivity in hole-doped diamond. Phys. Rev. Lett. 93, 237002 (2004)

  13. 13

    Kawaji, H., Horie, H., Yamanaka, S. & Ishikawa, M. Superconductivity in the silicon clathrate compound (Na,Ba)xSi46 . Phys. Rev. Lett. 74, 1427–1429 (1995)

  14. 14

    Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542–545 (2004)

  15. 15

    Yokoya, T. et al. Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature 438, 647–650 (2005)

  16. 16

    Sacépé, B. et al. Tunneling spectroscopy and vortex imaging in boron-doped diamond. Phys. Rev. Lett. 96, 097006 (2006)

  17. 17

    Kerrien, G. et al. Ultra-shallow, super-doped and box-like junctions realized by laser-induced doping. Appl. Surf. Sci. 186, 45–51 (2002)

  18. 18

    Kerrien, G. et al. Gas immersion laser doping (GILD) for ultra-shallow junction formation. Thin Solid Films 453–454, 106–109 (2004)

  19. 19

    Kerrien, G. et al. Optical characterization of laser-processed ultrashallow junctions. Appl. Surf. Sci. 208–209, 277–284 (2003)

  20. 20

    Vailionis, A., Glass, G., Desjardins, P., Cahill, D. G. & Greene, J. E. Electrically active and inactive B lattice sites in ultrahighly B doped Si(001): An X-ray near-edge absorption fine-structure and high-resolution diffraction study. Phys. Rev. Lett. 82, 4464–4467 (1999)

  21. 21

    Eremets, M. I., Struzhkin, V. V., Mao, H.-k. & Hemley, R. J. Superconductivity in boron. Science 293, 272–274 (2001)

  22. 22

    Tinkham, M. in Inhomogeneous Superconductors-1979 (eds Gubser, D. U., Francavilla, T. L., Laibowitz, J. R. & Wolf, S. A.) 1–12 (AIP Conf. Proc. Vol. 58, American Institute of Physics, 1980)

  23. 23

    Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and purity dependence of the superconducting critical field Hc2, III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966)

  24. 24

    Ting, C. S., Lee, T. K. & Quinn, J. J. Effective mass and g factor of interacting electrons in the surface inversion layer of silicon. Phys. Rev. Lett. 34, 870–874 (1975)

  25. 25

    Kent, A. D., Kapitulnik, A. & Geballe, T. H. Hc2 spectroscopy of geometrical effects in La-S Films. Phys. Rev. B 36, 8827–8830 (1987)

  26. 26

    Quateman, J. H. Tc suppression and critical fields in thin superconducting Nb films. Phys. Rev. B 34, 1948–1951 (1986)

  27. 27

    Guyon, E., Meunier, F. & Thomson, R. S. Thickness dependence of κ2 and related problems for superconducting alloy films in strong fields. Phys. Rev. 156, 452–469 (1967)

  28. 28

    Blase, X., Adessi & Connétable, D. Role of the dopant in the superconductivity of diamond. Phys. Rev. Lett. 93, 237004 (2004)

  29. 29

    Lee, K.-W. & Pickett, W. E. Superconductivity in boron-doped diamond. Phys. Rev. Lett. 93, 237003 (2004)

  30. 30

    Bustarret, E. et al. Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films. Phys. Rev. Lett. 93, 237005 (2004)

Download references


The authors acknowledge J. Marcus, M. Sanquer and X. Jehl for access to their cryostats, as well as J. Pernot for discussions. Calculations were performed at the CNRS national supercomputing centre (IDRIS). Partial funding by the French ANR-05-BLAN programme is acknowledged. Author Contributions The samples were prepared by D.D. and J.B., and the calculations performed by E.Bo. and X.B. All other authors contributed to the physical characterization of the samples.

Author information

Author notes

    • A. Huxley

    Present address: School of Physics, University of Edinburgh, Edinburgh, EH9 3JZ, UK

  1. E. Bustarret and C. Marcenat: These authors contributed equally to this work.


  1. Laboratoire d’Etudes des Propriétés Electroniques des Solides

    • E. Bustarret
    • , P. Achatz
    •  & J. Kačmarčik
  2. Laboratoire de Cristallographie, CNRS, BP166, 38042, Grenoble, France

    • L. Ortéga
  3. Département de la Recherche Fondamentale sur la Matière Condensée, SPSMS, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble, France

    • C. Marcenat
    • , P. Achatz
    • , F. Lévy
    •  & A. Huxley
  4. Institute of Experimental Physics, Slovak Academy of Sciences, SK-04001, Košice, Slovakia

    • J. Kačmarčik
  5. Laboratoire de Physique de la Matière Condensée et Nanostructures, Université Lyon I and CNRS, Domaine scientifique de la Doua, 69622, Villeurbanne, France

    • E. Bourgeois
    •  & X. Blase
  6. Institut d’Electronique Fondamentale, Université Paris Sud and CNRS, Bât. 220, 91405, Orsay, France

    • D. Débarre
    •  & J. Boulmer


  1. Search for E. Bustarret in:

  2. Search for C. Marcenat in:

  3. Search for P. Achatz in:

  4. Search for J. Kačmarčik in:

  5. Search for F. Lévy in:

  6. Search for A. Huxley in:

  7. Search for L. Ortéga in:

  8. Search for E. Bourgeois in:

  9. Search for X. Blase in:

  10. Search for D. Débarre in:

  11. Search for J. Boulmer in:

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Corresponding authors

Correspondence to E. Bustarret or C. Marcenat.

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.