Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Mg-chelatase H subunit is an abscisic acid receptor

Abstract

Abscisic acid (ABA) is a vital phytohormone that regulates mainly stomatal aperture and seed development, but ABA receptors involved in these processes have yet to be determined. We previously identified from broad bean an ABA-binding protein (ABAR) potentially involved in stomatal signalling, the gene for which encodes the H subunit of Mg-chelatase (CHLH), which is a key component in both chlorophyll biosynthesis and plastid-to-nucleus signalling. Here we show that Arabidopsis ABAR/CHLH specifically binds ABA, and mediates ABA signalling as a positive regulator in seed germination, post-germination growth and stomatal movement, showing that ABAR/CHLH is an ABA receptor. We show also that ABAR/CHLH is a ubiquitous protein expressed in both green and non-green tissues, indicating that it might be able to perceive the ABA signal at the whole-plant level.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: ABAR binds ABA.
Figure 2: Changes in ABAR expression alter plant sensitivity to ABA.
Figure 3: ABAR-mediated ABA signalling is a distinct process.
Figure 4: Spatial expression of ABAR and alteration of ABA-signalling genes in transgenic plants.

References

  1. Leung, J. & Giraudat, J. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 199–222 (1998)

    CAS  Article  Google Scholar 

  2. Finkelstein, R. R., Gampala, S. S. & Rock, C. D. Abscisic acid signaling in seeds and seedlings. Plant Cell 14, S15–S45 (2002)

    CAS  Article  Google Scholar 

  3. Himmelbach, A., Yang, Y. & Grill, E. Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol. 6, 470–479 (2003)

    CAS  Article  Google Scholar 

  4. Hornberg, C. & Weiler, E. W. High affinity binding sites for abscisic acid at the plasmalemma of Vicia faba guard cells. Nature 310, 321–324 (1984)

    ADS  CAS  Article  Google Scholar 

  5. Zhang, D. P., Wu, Z. Y., Li, X. Y. & Zhao, Z. X. Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol. 128, 714–725 (2002)

    CAS  Article  Google Scholar 

  6. Razem, F. A., Luo, M., Liu, J. H., Abrams, S. R. & Hill, R. D. Purification and characterization of a barley aleurone abscisic acid-binding protein. J. Biol. Chem. 279, 9922–9929 (2004)

    CAS  Article  Google Scholar 

  7. Razem, F. A., El-Kereamy, A., Abrams, S. R. & Hill, R. D. The RNA-binding protein FCA is an abscisic acid receptor. Nature 439, 290–294 (2006)

    ADS  CAS  Article  Google Scholar 

  8. Walker, C. J. & Willows, R. D. Mechanism and regulation of Mg-chelatase. Biochem. J. 327, 321–333 (1997)

    CAS  Article  Google Scholar 

  9. Mochizuki, N., Brusslan, J. A., Larkin, R., Nagatani, N. & Chory, J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl Acad. Sci. USA 98, 2053–2058 (2001)

    ADS  CAS  Article  Google Scholar 

  10. Surpin, M., Larkin, R. M. & Chory, J. Signal transduction between the chloroplasts and the nucleus. Plant Cell 14, S327–S338 (2002)

    CAS  Article  Google Scholar 

  11. Strand, Å., Asami, T., Alonso, J., Ecker, J. R. & Chory, J. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421, 79–83 (2003)

    ADS  CAS  Article  Google Scholar 

  12. Nott, A., Jung, H. S., Koussevitzky, S. & Chory, J. Plastid-to-nucleus retrograde signaling. Annu. Rev. Plant Biol. 57, 730–759 (2006)

    Article  Google Scholar 

  13. Giraudat, J. et al. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4, 1251–1261 (1992)

    CAS  Article  Google Scholar 

  14. Nambara, E., Naito, S. & McCourt, P. A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J. 2, 435–441 (1992)

    CAS  Article  Google Scholar 

  15. Karger, G. A., Reid, J. D. & Hunter, C. N. Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry 40, 9291–9299 (2001)

    CAS  Article  Google Scholar 

  16. Chamovitz, D., Pecker, I. & Hirschberg, J. The molecular basis of resistance to the herbicide norflurazon. Plant Mol. Biol. 16, 967–974 (1991)

    CAS  Article  Google Scholar 

  17. Guo, H. S., Fei, J. F., Xie, Q. & Chua, N. H. A chemical-regulated inducible RNAi system in plants. Plant J. 34, 383–392 (2003)

    CAS  Article  Google Scholar 

  18. Yamaguchi-Shinozaki, K. & Shinozaki, K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251–264 (1994)

    CAS  Article  Google Scholar 

  19. Abe, H. et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcription activators in abscisic acid signaling. Plant Cell 15, 63–78 (2003)

    CAS  Article  Google Scholar 

  20. Leung, J. et al. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264, 1448–1452 (1994)

    ADS  CAS  Article  Google Scholar 

  21. Meyer, K., Leube, M. P. & Grill, E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana.. Science 264, 1452–1455 (1994)

    ADS  CAS  Article  Google Scholar 

  22. Gosti, F. et al. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11, 1897–1909 (1999)

    CAS  Article  Google Scholar 

  23. Leung, J., Merlot, S. & Giraudat, J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 encode homologous protein phosphatase 2C involved in abscisic acid signal transduction. Plant Cell 9, 759–771 (1997)

    CAS  Article  Google Scholar 

  24. Davies, S., Kurepa, J. & Vierstra, R. D. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc. Natl Acad. Sci. USA 96, 6541–6546 (1999)

    ADS  Article  Google Scholar 

  25. Muramoto, T., Kohchi, T., Yokota, A., Hwang, I. & Goodman, H. M. The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11, 335–347 (1999)

    CAS  Article  Google Scholar 

  26. Kohchi, T. et al. The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13, 425–436 (2001)

    CAS  Article  Google Scholar 

  27. Larkin, R. M., Alonso, J. M., Ecker, J. R. & Chory, J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299, 902–906 (2003)

    ADS  CAS  Article  Google Scholar 

  28. Verdecia, M. A. et al. Structure of the Mg-chelatase cofactor GUN4 reveals a novel hand-shaped fold for porphyrin binding. PLoS Biol. 3, 777–789 (2005)

    CAS  Article  Google Scholar 

  29. Espineda, C. E., Linford, A. S., Devine, D. & Brusslan, J. A. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana.. Proc. Natl Acad. Sci. USA 96, 10507–10511 (1999)

    ADS  CAS  Article  Google Scholar 

  30. Finkelstein, R. R. Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J. 5, 765–771 (1994)

    Article  Google Scholar 

  31. Finkelstein, R. R., Wang, M. L., Lynch, T. J., Rao, S. & Goodman, H. M. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10, 1043–1054 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Finkelstein, R. R. & Lynch, T. J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599–609 (2000)

    CAS  Article  Google Scholar 

  33. Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F. & Giraudat, J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089–3099 (2002)

    CAS  Article  Google Scholar 

  34. Guo, Y. et al. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis.. Dev. Cell 3, 233–244 (2002)

    CAS  Article  Google Scholar 

  35. Manfre, A. J., Lanni, L. M. & Marcotte, W. R. The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development. Plant Physiol. 140, 140–149 (2006)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank N. H. Chua for the CLX inducible RNAi system, and Z. Z. Gong and X. C. Wang for advice and help on materials. This work was funded by the National Key Basic Research ‘973’ Program of China and National Natural Science Foundation of China (to D.P.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Peng Zhang.

Ethics declarations

Competing interests

The sequence of the cDNA encoding part of CHLH is deposited in GenBank under accession number DQ376081. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Tables 1 and 2 and Supplementary Figures 1–9 (DOC 2980 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shen, YY., Wang, XF., Wu, FQ. et al. The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823–826 (2006). https://doi.org/10.1038/nature05176

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05176

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing