Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental purification of two-atom entanglement

Abstract

Entanglement is a necessary resource for quantum applications—entanglement established between quantum systems at different locations enables private communication1 and quantum teleportation2, and facilitates quantum information processing3. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement ‘purification’ has been proposed4 to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out5,6,7,8,9. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification4 with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Network diagrams for purification.
Figure 2: Purified fidelity as a function of unpurified fidelity.

References

  1. Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    ADS  CAS  Article  Google Scholar 

  4. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    ADS  CAS  Article  Google Scholar 

  5. Kwiat, P. G., Barraza-Lopez, S., Stefanov, A. & Gisin, N. Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001)

    ADS  CAS  Article  Google Scholar 

  6. Pan, J-W., Gasparoni, S., Ursin, R., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)

    ADS  CAS  Article  Google Scholar 

  7. Yamamoto, T., Koashi, M., Özdemir, S. K. & Imoto, N. Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003)

    ADS  CAS  Article  Google Scholar 

  8. Zhao, Z., Yang, T., Chen, Y-A., Zhang, A-N. & Pan, J-W. Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)

    ADS  Article  Google Scholar 

  9. Walther, P. et al. Quantum nonlocality obtained from local states by entanglement purification. Phys. Rev. Lett. 94, 040504 (2005)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  10. Quantum Information Science and Technology Experts Panel. ARDA quantum information science and technology roadmap. 〈http://qist.lanl.gov〉 (2002)

  11. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)

    ADS  Article  Google Scholar 

  12. Eisert, J., Jacobs, K., Papdopoulos, P. & Plenio, M. B. Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000)

    ADS  Article  Google Scholar 

  13. Brennen, G. K., Song, D. & Williams, C. J. Quantum computer architecture using nonlocal interactions. Phys. Rev. A 67, 050302 (2003)

    ADS  Article  Google Scholar 

  14. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)

    ADS  CAS  Article  Google Scholar 

  15. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    ADS  CAS  Article  Google Scholar 

  16. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)

    ADS  CAS  Article  Google Scholar 

  17. King, B. E. et al. Cooling the collective motion of trapped ions to initialize a quantum register. Phys. Rev. Lett. 81, 1525–1528 (1998)

    ADS  CAS  Article  Google Scholar 

  18. Ozeri, R. et al. Hyperfine coherence in the presence of spontaneous photon scattering. Phys. Rev. Lett. 95, 030403 (2005)

    ADS  CAS  Article  Google Scholar 

  19. Barrett, M. D. et al. Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic. Phys. Rev. A 68, 042302 (2003)

    ADS  Article  Google Scholar 

  20. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Nat. Inst. Stand. Technol. 103, 259–328 (1998)

    CAS  Article  Google Scholar 

  21. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall, New York, 1993)

  22. Lvovsky, A. I. & Raymer, M. G. Continuous-variable optical quantum state tomography. Preprint at 〈http://www.arXiv.org/quant-ph/0511044〉 (2005)

Download references

Acknowledgements

This work was supported by the Disruptive Technology Office (DTO), by a DoD Multidisciplinary University Research Initiative (MURI) programme administered by the Office of Naval Research and by NIST. R.R. was supported by the Alexander von Humboldt Foundation. We thank S. Glancy and W. Itano for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Leibfried.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reichle, R., Leibfried, D., Knill, E. et al. Experimental purification of two-atom entanglement. Nature 443, 838–841 (2006). https://doi.org/10.1038/nature05146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05146

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing