Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions


Over the past decade, long-duration γ-ray bursts (GRBs)—including the subclass of X-ray flashes (XRFs)—have been revealed1,2,3 to be a rare variety of type Ibc supernova. Although all these events result from the death of massive stars, the electromagnetic luminosities of GRBs and XRFs exceed those of ordinary type Ibc supernovae by many orders of magnitude. The essential physical process that causes a dying star to produce a GRB or XRF, and not just a supernova, is still unknown. Here we report radio and X-ray observations of XRF 060218 (associated4 with supernova SN 2006aj), the second-nearest5,6 GRB identified until now. We show that this event is a hundred times less energetic but ten times more common than cosmological GRBs. Moreover, it is distinguished from ordinary type Ibc supernovae by the presence of 1048 erg coupled to mildly relativistic ejecta, along with a central engine (an accretion-fed, rapidly rotating compact source) that produces X-rays for weeks after the explosion. This suggests that the production of relativistic ejecta is the key physical distinction between GRBs or XRFs and ordinary supernovae, while the nature of the central engine (black hole or magnetar) may distinguish typical bursts from low-luminosity, spherical events like XRF 060218.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radio and X-ray light-curves of XRF 060218.
Figure 2: Radio observations for a large sample of local type Ibc supernovae.
Figure 3: Energy as a function of velocity for GRBs, XRFs, and type Ibc supernovae.


  1. Galama, T. J. et al. An unusual supernova in the error box of the gamma-ray burst of 25 April 1998. Nature 395, 670–672 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Kulkarni, S. R. et al. Radio emission from the unusual supernova 1998bw and its association with the gamma-ray burst of 25 April 1998. Nature 395, 663–669 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Matheson, T. et al. Photometry and spectroscopy of GRB 030329 and its associated supernova 2003dh: the first two months. Astrophys. J. 599, 394–407 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Pian, E. et al. An optical supernova associated with the X-ray flash XRF 060218. Nature doi:10.1038/nature05082 (this issue)

  5. Campana, S. et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature doi:10.1038/nature04892 (this issue)

  6. Mirabal, N., Halpern, J. P., An, D., Thorstensen, J. R. & Terndrup, D. M. GRB 060218/SN 2006aj: a gamma-ray burst and prompt supernova at z = 0.0335. Astrophys. J. (submitted); preprint at (2006)

  7. Heise, J., in't Zand, J., Kippen, R. M. & Woods, P. M. in Gamma-Ray Bursts in the Afterglow Era (eds Costa, E., Frontera, F. & Hjorth, J.) 16–21 (Springer, Berlin/Heidelberg, 2001)

    Book  Google Scholar 

  8. Soderberg, A. M. et al. A redshift determination for XRF 020903: first spectroscopic observations of an X-ray flash. Astrophys. J. 606, 994–999 (2004)

    Article  ADS  CAS  Google Scholar 

  9. De Luca, A. GRB 060218: analysis of the XMM-Newton observation. GRB Circ. Netw. 4853 (2006)

  10. Sazonov, S. Y., Lutovinov, A. A. & Sunyaev, R. A. An apparently normal γ-ray burst with an unusually low luminosity. Nature 430, 646–648 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Soderberg, A. M. et al. The sub-energetic γ-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425. Nature 430, 648–650 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Soderberg, A. M., Nakar, E., Berger, E. & Kulkarni, S. R. Late-time radio observations of 68 type Ibc supernovae: strong constraints on off-axis gamma-ray bursts. Astrophys. J. 638, 930–937 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Waxman, E. The nature of GRB 980425 and the search for off-axis gamma-ray burst signatures in nearby type Ib/c supernova emission. Astrophys. J. 602, 886–891 (2004)

    Article  ADS  Google Scholar 

  14. Sari, R., Piran, T. & Halpern, J. P. Jets in gamma-ray bursts. Astrophys. J. 519, L17–L20 (1999)

    Article  ADS  Google Scholar 

  15. Malesani, D. et al. SN 2003lw and GRB 031203: A bright supernova for a faint gamma-ray burst. Astrophys. J. 609, L5–L8 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Lyne, A. G., Pritchard, R. S., Graham-Smith, F. & Camilo, F. Very low braking index for the VELA pulsar. Nature 381, 497–498 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Schmidt, M. Luminosity function of gamma-ray bursts derived without benefit of redshifts. Astrophys. J. 552, 36–41 (2001)

    Article  ADS  Google Scholar 

  18. Cappellaro, E., Evans, R. & Turatto, M. A new determination of supernova rates and a comparison with indicators for galactic star formation. Astron. Astrophys. 351, 459–466 (1999)

    ADS  Google Scholar 

  19. Dahlen, T. et al. High-redshift supernova rates. Astrophys. J. 613, 189–199 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Podsiadlowski, P., Mazzali, P. A., Nomoto, K., Lazzati, D. & Cappellaro, E. The rates of hypernovae and gamma-ray bursts: implications for their progenitors. Astrophys. J. 607, L17–L20 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Berger, E., Kulkarni, S. R., Frail, D. A. & Soderberg, A. M. A radio survey of type Ib and Ic supernovae: Searching for engine-driven supernovae. Astrophys. J. 599, 408–418 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Gaensler, B. M. et al. A stellar wind bubble coincident with the anomalous X-ray pulsar 1E 1048.1-5937: are magnetars formed from massive progenitors? Astrophys. J. 620, L95–L98 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Hurley, K. et al. An exceptionally bright flare from SGR 1806-20 and the origins of short-duration γ-ray bursts. Nature 434, 1098–1103 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Usov, V. V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts. Nature 357, 472–474 (1992)

    Article  ADS  Google Scholar 

  25. Chevalier, R. A. Synchrotron self-absorption in radio supernovae. Astrophys. J. 499, 810–819 (1998)

    Article  ADS  Google Scholar 

  26. Granot, J. & Sari, R. The shape of spectral breaks in gamma-ray burst afterglows. Astrophys. J. 568, 820–829 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Berger, E. et al. A common origin for cosmic explosions inferred from calorimetry of GRB030329. Nature 426, 154–157 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Baron, E., Branch, D., Hauschildt, P. H., Filippenko, A. V. & Kirshner, R. P. Spectral models of the type IC supernova SN 1994I in M51. Astrophys. J. 527, 739–745 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Mazzali, P. A. et al. A neutron-star-driven X-ray Flash associated with supernova SN 2006aj. Nature doi:10.1038/nature05081 (this issue)

  30. Tan, J. C., Matzner, C. D. & McKee, C. F. Trans-relativistic blast waves in supernovae as gamma-ray burst progenitors. Astrophys. J. 551, 946–972 (2001)

    Article  ADS  Google Scholar 

Download references


GRB research at Caltech is supported in part by funds from NSF and NASA. We are, as always, indebted to S. Barthelmy and the GCN. The VLA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. A.M.S. and S.B.C. are supported by NASA Graduate Research Fellowships. E.B. and A.G.-Y. acknowledge support by NASA through a Hubble Fellowship grant. D.N.B. and J.A.N. acknowledge support by NASA.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. M. Soderberg.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains two Supplementary Discussion sections: I. Estimates for the Rate of Sub-energetic GRBs; and II. Estimates for the rate of Type Ibc supernovae like GRB980425 and XRF060218. (PDF 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soderberg, A., Kulkarni, S., Nakar, E. et al. Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 442, 1014–1017 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing