Cells on chips

Abstract

Microsystems create new opportunities for the spatial and temporal control of cell growth and stimuli by combining surfaces that mimic complex biochemistries and geometries of the extracellular matrix with microfluidic channels that regulate transport of fluids and soluble factors. Further integration with bioanalytic microsystems results in multifunctional platforms for basic biological insights into cells and tissues, as well as for cell-based sensors with biochemical, biomedical and environmental functions. Highly integrated microdevices show great promise for basic biomedical and pharmaceutical research, and robust and portable point-of-care devices could be used in clinical settings, in both the developed and the developing world.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Tissue organization, culture and analysis in microsystems.
Figure 2: Microsystems enabling cell-based assays from cell culture to biochemical analysis.
Figure 3: Substrate patterning and tissue culture.
Figure 4: Integrated cell analysis systems.

References

  1. 1

    Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

    MATH  ADS  Google Scholar 

  2. 2

    Xia, Y. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    CAS  ADS  Google Scholar 

  3. 3

    van den Berg, A. & Lammerink, T. S. J. in Microsystem Technology in Chemistry and Life Science (eds Manz, A. & Becker, H.) 21–49 (Springer, Berlin, 1998).

    Google Scholar 

  4. 4

    Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical-analysis systems — a novel concept for chemical sensing. Sens. Actuators B Chem. 1, 244–248 (1990).

    CAS  Google Scholar 

  5. 5

    Dittrich, P. S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery. Nature Rev. Drug Discov. 5, 210–218 (2006).

    CAS  Google Scholar 

  6. 6

    Bhatia, S. N., Balis, U. J., Yarmush, M. L. & Toner, M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13, 1883–1900 (1999).

    CAS  PubMed  Google Scholar 

  7. 7

    Folch, A. & Toner, M. Microengineering of cellular interactions. Annu. Rev. Biomed. Eng. 2, 227–256 (2000).

    CAS  PubMed  Google Scholar 

  8. 8

    Tsang, V. L. & Bhatia, S. N. Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56, 1635–1647 (2004).

    PubMed  Google Scholar 

  9. 9

    Britland, S., Clark, P., Connolly, P. & Moores, G. Micropatterned substratum adhesiveness — a model for morphogenetic cues controlling cell behavior. Exp. Cell Res. 198, 124–129 (1992).

    CAS  PubMed  Google Scholar 

  10. 10

    Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    CAS  PubMed  Google Scholar 

  11. 11

    Théry, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol. 7, 947–953 (2005).

    PubMed  Google Scholar 

  12. 12

    Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    CAS  ADS  PubMed  Google Scholar 

  13. 13

    Sivaraman, A. et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6, 569–591 (2005).

    CAS  PubMed  Google Scholar 

  14. 14

    Powers, M. J. et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng. 78, 257–269 (2002).

    CAS  PubMed  Google Scholar 

  15. 15

    Guguenguillouzo, C. et al. Maintenance and reversibility of active albumin secretion by adult-rat hepatocytes co-cultured with another liver epithelial-cell type. Exp. Cell Res. 143, 47–54 (1983).

    CAS  Google Scholar 

  16. 16

    Bhatia, S. N., Yarmush, M. L. & Toner, M. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J. Biomed. Mater. Res. 34, 189–199 (1997).

    CAS  PubMed  Google Scholar 

  17. 17

    Liegibel, U. M. et al. Fluid shear of low magnitude increases growth and expression of TGF beta 1 and adhesion molecules in human bone cells in vitro. Exp. Clin. Endocrinol. Diabetes 112, 356–363 (2004).

    CAS  PubMed  Google Scholar 

  18. 18

    Leclerc, E. et al. Study of osteoblastic cells in a microfluidic environment. Biomaterials 27, 586–595 (2006).

    CAS  PubMed  Google Scholar 

  19. 19

    Groisman, A. et al. A microfluidic chemostat for experiments with bacterial and yeast cells. Nature Methods 2, 685–689 (2005).

    CAS  PubMed  Google Scholar 

  20. 20

    Balagadde, F. K., You, L. C., Hansen, C. L., Arnold, F. H. & Quake, S. R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309, 137–140 (2005).

    CAS  ADS  Google Scholar 

  21. 21

    Szita, N. et al. Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 5, 819–826 (2005).

    CAS  PubMed  Google Scholar 

  22. 22

    Boccazzi, P. et al. Gene expression analysis of Escherichia coli grown in miniaturized bioreactor platforms for high-throughput analysis of growth and genomic data. Appl. Microbiol. Biotechnol. 68, 518–532 (2005).

    CAS  PubMed  Google Scholar 

  23. 23

    Vilkner, T., Janasek, D. & Manz, A. Micro total analysis systems. Recent developments. Anal. Chem. 76, 3373–3385 (2004).

    CAS  Google Scholar 

  24. 24

    Lion, N. et al. Microfluidic systems in proteomics. Electrophoresis 24, 3533–3562 (2003).

    CAS  PubMed  Google Scholar 

  25. 25

    Auroux, P. A., Koc, Y., deMello, A., Manz, A. & Day, P. J. R. Miniaturised nucleic acid analysis. Lab Chip 4, 534–546 (2004).

    CAS  PubMed  Google Scholar 

  26. 26

    Andersson, H. & van den Berg, A. Microfluidic devices for cellomics: a review. Sens. Actuators B Chem. 92, 315–325 (2003).

    CAS  Google Scholar 

  27. 27

    Verpoorte, E. Microfluidic chips for clinical and forensic analysis. Electrophoresis 23, 677–712 (2002).

    CAS  PubMed  Google Scholar 

  28. 28

    Breslauer, D. N., Lee, P. J. & Lee, L. P. Microfluidics-based systems biology. Mol. Biosys. 2, 97–112 (2006).

    CAS  Google Scholar 

  29. 29

    Helmke, B. P. & Minerick, A. R. Designing a nano-interface in a microfluidic chip to probe living cells: challenges and perspectives. Proc. Natl Acad. Sci. USA 103, 6419–6424 (2006).

    CAS  ADS  PubMed  Google Scholar 

  30. 30

    Jeon, N. L. et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature Biotechnol. 20, 826–830 (2002).

    CAS  Google Scholar 

  31. 31

    Walker, G. M. et al. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5, 611–618 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Abhyankar, V. V., Lokuta, M. A., Huttenlocher, A. & Beebe, D. J. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6, 389–393 (2006).

    CAS  PubMed  Google Scholar 

  33. 33

    Hung, P. J., Lee, P. J., Sabounchi, P., Lin, R. & Lee, L. P. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89, 1–8 (2005).

    CAS  PubMed  Google Scholar 

  34. 34

    Takayama, S. et al. Laminar flows — subcellular positioning of small molecules. Nature 411, 1016 (2001).

    CAS  ADS  PubMed  Google Scholar 

  35. 35

    Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H. & Ismagilov, R. F. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434, 1134–1138 (2005).

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Yang, M. S., Li, C. W. & Yang, J. Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal. Chem. 74, 3991–4001 (2002).

    CAS  PubMed  Google Scholar 

  37. 37

    Lee, P. J., Hung, P. J., Shaw, R., Jan, L. & Lee, L. P. Microfluidic application-specific integrated device for monitoring direct cell–cell communication via gap junctions between individual cell pairs. Appl. Phys. Lett. 86, 223902 (2005).

    ADS  Google Scholar 

  38. 38

    Wheeler, A. R. et al. Microfluidic device for single-cell analysis. Anal. Chem. 75, 3581–3586 (2003).

    CAS  PubMed  Google Scholar 

  39. 39

    El-Ali, J., Gaudet, S., Gunther, A., Sorger, P. K. & Jensen, K. F. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow. Anal. Chem. 77, 3629–3636 (2005).

    CAS  PubMed  Google Scholar 

  40. 40

    Song, H., Tice, J. D. & Ismagilov, R. F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Edn Engl. 42, 768–772 (2003).

    CAS  Google Scholar 

  41. 41

    Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Gascoyne, P. R. C. & Vykoukal, J. V. Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE 92, 22–42 (2004).

    CAS  Google Scholar 

  43. 43

    Hu, X., Arnold, W. M. & Zimmermann, U. Alterations in the electrical properties of lymphocyte-T and lymphocyte-B membranes induced by mitogenic stimulation — activation monitored by electro-rotation of single cells. Biochim. Biophys. Acta 1021, 191–200 (1990).

    CAS  PubMed  Google Scholar 

  44. 44

    Becker, F. F. et al. Separation of human breast-cancer cells from blood by differential dielectric affinity. Proc. Natl Acad. Sci. USA 92, 860–864 (1995).

    CAS  ADS  Google Scholar 

  45. 45

    Hu, X. Y. et al. Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl Acad. Sci. USA 102, 15757–15761 (2005).

    CAS  ADS  PubMed  Google Scholar 

  46. 46

    Voldman, J., Gray, M. L., Toner, M. & Schmidt, M. A. A microfabrication-based dynamic array cytometer. Anal. Chem. 74, 3984–3990 (2002).

    CAS  PubMed  Google Scholar 

  47. 47

    Huang, Y. et al. Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal. Chem. 74, 3362–3371 (2002).

    CAS  PubMed  Google Scholar 

  48. 48

    Fu, A. Y., Chou, H. P., Spence, C., Arnold, F. H. & Quake, S. R. An integrated microfabricated cell sorter. Anal. Chem. 74, 2451–2457 (2002).

    CAS  PubMed  Google Scholar 

  49. 49

    Wang, M. M. et al. Microfluidic sorting of mammalian cells by optical force switching. Nature Biotechnol. 23, 83–87 (2005).

    CAS  Google Scholar 

  50. 50

    Chang, W. C., Lee, L. P. & Liepmann, D. Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip 5, 64–73 (2005).

    CAS  PubMed  Google Scholar 

  51. 51

    Revzin, A., Sekine, K., Sin, A., Tompkins, R. G. & Toner, M. Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes. Lab Chip 5, 30–37 (2005).

    CAS  PubMed  Google Scholar 

  52. 52

    Verpoorte, E. Chip vision — optics for microchips. Lab Chip 3, 42N–52N (2003).

    CAS  PubMed  Google Scholar 

  53. 53

    Wang, Z. et al. Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4, 372–377 (2004).

    CAS  PubMed  Google Scholar 

  54. 54

    Li, P. C. H. & Harrison, D. J. Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal. Chem. 69, 1564–1568 (1997).

    CAS  PubMed  Google Scholar 

  55. 55

    Di Carlo, D., Jeong, K. H. & Lee, L. P. Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 3, 287–291 (2003).

    CAS  PubMed  Google Scholar 

  56. 56

    Lee, S. W. & Tai, Y. C. A micro cell lysis device. Sens. Actuators A Phys. 73, 74–79 (1999).

    CAS  Google Scholar 

  57. 57

    Lu, H., Schmidt, M. A. & Jensen, K. F. A microfluidic electroporation device for cell lysis. Lab Chip 5, 23–29 (2005).

    CAS  PubMed  Google Scholar 

  58. 58

    McClain, M. A. et al. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 75, 5646–5655 (2003).

    CAS  PubMed  Google Scholar 

  59. 59

    Lin, Y. C., Jen, C. M., Huang, M. Y., Wu, C. Y. & Lin, X. Z. Electroporation microchips for continuous gene transfection. Sens. Actuators B Chem. 79, 137–143 (2001).

    CAS  Google Scholar 

  60. 60

    Han, J. & Craighead, H. G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    CAS  ADS  Google Scholar 

  61. 61

    Fu, J. P., Mao, P. & Han, J. Y. Nanofilter array chip for fast gel-free biomolecule separation. Appl. Phys. Lett. 87, 263902 (2005).

    ADS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Lu, H., Gaudet, S., Schmidt, M. A. & Jensen, K. F. A microfabricated device for subcellular organelle sorting. Anal. Chem. 76, 5705–5712 (2004).

    CAS  PubMed  Google Scholar 

  63. 63

    Gottschlich, N., Jacobson, S. C., Culbertson, C. T. & Ramsey, J. M. Two-dimensional electrochromatography/capillary electrophoresis on a microchip. Anal. Chem. 73, 2669–2674 (2001).

    CAS  PubMed  Google Scholar 

  64. 64

    Li, Y., Buch, J. S., Rosenberger, F., DeVoe, D. L. & Lee, C. S. Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfludic network. Anal. Chem. 76, 742–748 (2004).

    CAS  PubMed  Google Scholar 

  65. 65

    Wang, Y. C., Stevens, A. L. & Han, J. Y. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299 (2005).

    CAS  PubMed  Google Scholar 

  66. 66

    Northrup, M. A., Ching, R. M. & Watson, R. T. in Proceedings of the 7th International Conference on Solid State Sensors and Actuators Yokahama, Japan 924–926 (IEEJ, Tokyo, 1993).

    Google Scholar 

  67. 67

    Burns, M. A. et al. An integrated nanoliter DNA analysis device. Science 282, 484–487 (1998).

    CAS  ADS  PubMed  Google Scholar 

  68. 68

    Yin, N. F. et al. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal. Chem. 77, 527–533 (2005).

    CAS  PubMed  Google Scholar 

  69. 69

    Sato, K. et al. Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-γ. Electrophoresis 23, 734–739 (2002).

    CAS  PubMed  Google Scholar 

  70. 70

    Bernard, A., Michel, B. & Delamarche, E. Micromosaic immunoassays. Anal. Chem. 73, 8–12 (2001).

    CAS  PubMed  Google Scholar 

  71. 71

    Wei, C. W., Cheng, J. Y., Huang, C. T., Yen, M. H. & Young, T. H. Using a microfluidic device for 1 µl DNA microarray hybridization in 500 s. Nucleic Acids Res. 33, e78 (2005).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Gruner, G. Carbon nanotube transistors for biosensing applications. Anal. Bioanal. Chem. 384, 322–335 (2006).

    CAS  PubMed  Google Scholar 

  73. 73

    Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).

    CAS  Google Scholar 

  74. 74

    Burg, T. P. & Manalis, S. R. Suspended microchannel resonators for biomolecular detection. Appl. Phys. Lett. 83, 2698–2700 (2003).

    CAS  ADS  Google Scholar 

  75. 75

    Ziegler, C. Cantilever-based biosensors. Anal. Bioanal. Chem. 379, 946–959 (2004).

    CAS  PubMed  Google Scholar 

  76. 76

    Clayton, J. Go with the microflow. Nature Methods 2, 621–627 (2005).

    CAS  Google Scholar 

  77. 77

    Gu, M. B., Mitchell, R. J. & Kim, B. C. Whole-cell-based biosensors for environmental biomonitoring and application. Adv. Biochem. Eng. Biotechnol. 87, 269–305 (2004).

    CAS  PubMed  Google Scholar 

  78. 78

    Bousse, L. Whole cell biosensors. Sens. Actuators B Chem. 34, 270–275 (1996).

    CAS  Google Scholar 

  79. 79

    Pancrazio, J. J., Whelan, J. P., Borkholder, D. A., Ma, W. & Stenger, D. A. Development and application of cell-based biosensors. Ann. Biomed. Eng. 27, 697–711 (1999).

    CAS  PubMed  Google Scholar 

  80. 80

    Gross, G. W., Harsch, A., Rhoades, B. K. & Gopel, W. Odor, drug and toxin analysis with neuronal networks in vitro: extracellular array recording of network responses. Biosens. Bioelectron. 12, 373–393 (1997).

    CAS  PubMed  Google Scholar 

  81. 81

    Pearce, T. M., Wilson, J. A., Oakes, S. G., Chiu, S. Y. & Williams, J. C. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture. Lab Chip 5, 97–101 (2005).

    CAS  Google Scholar 

  82. 82

    Chang, J. C., Brewer, G. J. & Wheeler, B. C. Modulation of neural network activity by patterning. Biosens. Bioelectron. 16, 527–533 (2001).

    CAS  PubMed  Google Scholar 

  83. 83

    Morin, F. et al. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Biosens. Bioelectron. 21, 1093–1100 (2006).

    CAS  PubMed  Google Scholar 

  84. 84

    DeBusschere, B. D. & Kovacs, G. T. A. Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens. Bioelectron. 16, 543–556 (2001).

    CAS  PubMed  Google Scholar 

  85. 85

    Wood, C., Williams, C. & Waldron, G. J. Patch clamping by numbers. Drug Discov. Today 9, 434–441 (2004).

    CAS  PubMed  Google Scholar 

  86. 86

    Fertig, N., Blick, R. H. & Behrends, J. C. Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 82, 3056–3062 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Schmidt, C., Mayer, M. & Vogel, H. A chip-based biosensor for the functional analysis of single ion channels. Angew. Chem. Int. Edn Engl. 39, 3137–3140 (2000).

    CAS  Google Scholar 

  88. 88

    Seo, J., Ionescu-Zanetti, C., Diamond, J., Lal, R. & Lee, L. P. Integrated multiple patch-clamp array chip via lateral cell trapping junctions. Appl. Phys. Lett. 84, 1973–1975 (2004).

    CAS  ADS  Google Scholar 

  89. 89

    Viravaidya, K., Sin, A. & Shuler, M. L. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Prog. 20, 316–323 (2004).

    CAS  PubMed  Google Scholar 

  90. 90

    Abhyanakar, V. V. & Beebe, D. J. in Lab-on-Chips for Cellomics (eds Andersson, H. & van den Berg, A.) 257–272 (Kluwer Academic, Dordrecht, The Netherlands, 2004).

    Google Scholar 

  91. 91

    Chung, B. G. et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5, 401–406 (2005).

    CAS  ADS  PubMed  Google Scholar 

  92. 92

    Kim, L., Vahey, M. D., Lee, H. Y. & Voldman, J. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 6, 394–406 (2006).

    CAS  PubMed  Google Scholar 

  93. 93

    Pal, R. et al. An integrated microfluidic device for influenza and other genetic analyses. Lab Chip 5, 1024–1032 (2005).

    CAS  PubMed  Google Scholar 

  94. 94

    Lagally, E. T. et al. Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal. Chem. 76, 3162–3170 (2004).

    CAS  PubMed  Google Scholar 

  95. 95

    Blazej, R. G., Kumaresan, P. & Mathies, R. A. Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proc. Natl Acad. Sci. USA 103, 7240–7245 (2006).

    CAS  ADS  PubMed  Google Scholar 

  96. 96

    Hong, J. W., Studer, V., Hang, G., Anderson, W. F. & Quake, S. R. A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnol. 22, 435–439 (2004).

    CAS  Google Scholar 

  97. 97

    Wu, H. K., Wheeler, A. & Zare, R. N. Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc. Natl Acad. Sci. USA 101, 12809–12813 (2004).

    CAS  ADS  Google Scholar 

  98. 98

    Gao, J., Yin, X. F. & Fang, Z. L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4, 47–52 (2004).

    CAS  PubMed  Google Scholar 

  99. 99

    Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane extracellular matrix–cytoskeleton crosstalk. Nature Rev. Mol. Cell Biol. 2, 793–805 (2001).

    CAS  Google Scholar 

  100. 100

    Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, E101–E108 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding received from a National Institutes of Health grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Klavs F. Jensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Ali, J., Sorger, P. & Jensen, K. Cells on chips. Nature 442, 403–411 (2006). https://doi.org/10.1038/nature05063

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.