Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Repulsively bound atom pairs in an optical lattice

Abstract

Throughout physics, stable composite objects are usually formed by way of attractive forces, which allow the constituents to lower their energy by binding together. Repulsive forces separate particles in free space. However, in a structured environment such as a periodic potential and in the absence of dissipation, stable composite objects can exist even for repulsive interactions. Here we report the observation of such an exotic bound state, which comprises a pair of ultracold rubidium atoms in an optical lattice. Consistent with our theoretical analysis, these repulsively bound pairs exhibit long lifetimes, even under conditions when they collide with one another. Signatures of the pairs are also recognized in the characteristic momentum distribution and through spectroscopic measurements. There is no analogue in traditional condensed matter systems of such repulsively bound pairs, owing to the presence of strong decay channels. Our results exemplify the strong correspondence between the optical lattice physics of ultracold bosonic atoms and the Bose–Hubbard model1,2—a link that is vital for future applications of these systems to the study of strongly correlated condensed matter and to quantum information.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Atom pairs in an optical lattice.
Figure 2: Atom pair states in one dimension.
Figure 3: Quasi-momentum distribution of atoms in the lattice.
Figure 4: Modulation spectroscopy of repulsively bound pairs.

References

  1. 1

    Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox. Ann. Phys. 315, 52–79 (2005)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Bloch, I. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23–30 (2005)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid insulator transition. Phys. Rev. B. 40, 546–570 (1989)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004)

    ADS  Article  Google Scholar 

  7. 7

    Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks-Girardeau gas. Science 305, 1125–1128 (2004)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Laburthe Tolra, B. et al. Observation of reduced three-body recombination in a correlated 1D degenerate Bose gas. Phys. Rev. Lett. 92, 190401 (2004)

    CAS  Article  Google Scholar 

  9. 9

    Fallani, L., Lye, J. E., Guarrera, V., Fort, C. & Inguscio, M. Onset of a Bose-glass of ultra-cold atoms in a disordered crystal of light. Preprint at http://arxiv.org/abs/cond-mat/0603655 (2006).

  10. 10

    Fedichev, P. O., Bijlsma, M. J. & Zoller, P. Extended molecules and geometric scattering resonances in optical lattices. Phys. Rev. Lett. 92, 080401 (2004)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ryu, C. et al. Raman-induced oscillation between an atomic and a molecular quantum gas. Preprint at http://arxiv.org/abs/cond-mat/0508201 (2005).

  12. 12

    Stöferle, T., Moritz, H., Günter, K., Köhl, M. & Esslinger, T. Molecules of fermionic atoms in an optical lattice. Phys. Rev. Lett. 96, 030401 (2006)

    ADS  Article  Google Scholar 

  13. 13

    Thalhammer, G. et al. Long-lived Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 96, 050402 (2006)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Donley, E. A., Claussen, N. R., Thompson, S. T. & Wieman, C. E. Atom–molecule coherence in a Bose–Einstein condensate. Nature 417, 529–533 (2002)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Creation of ultracold molecules from a Fermi gas of atoms. Nature 424, 47–50 (2003)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301, 1510–1513 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Xu, K. et al. Formation of quantum-degenerate sodium molecules. Phys. Rev. Lett. 91, 210402 (2003)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Cubizolles, J., Bourdel, T., Kokkelmans, S. J. J. M. F., Shlyapnikov, G. V. & Salomon, C. Production of long-lived ultracold Li2 molecules from a Fermi gas. Phys. Rev. Lett. 91, 240401 (2003)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Dürr, S., Volz, T., Marte, A. & Rempe, G. Observation of molecules produced from a Bose-Einstein condensate. Phys. Rev. Lett. 92, 020406 (2004)

    ADS  Article  Google Scholar 

  20. 20

    Koehler, T., Goral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Preprint at http://arxiv.org/abs/cond-mat/0601420 (2006).

  21. 21

    Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    ADS  Article  Google Scholar 

  22. 22

    Daley, A. J., Kollath, C., Schollwöck, U. & Vidal, G. Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. Theor. Exp. P04005 (2004)

  23. 23

    White, S. R. & Feiguin, A. E. Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett. 93, 076401 (2004)

    ADS  Article  Google Scholar 

  24. 24

    Greiner, M., Bloch, I., Mandel, O., Hänsch, T. W. & Esslinger, T. Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 87, 160405 (2001)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Hecker Denschlag, J. et al. A Bose-Einstein condensate in an optical lattice. J. Phys. B. 35, 3095–3110 (2002)

    ADS  Article  Google Scholar 

  26. 26

    Volz, T., Dürr, S., Ernst, S., Marte, A. & Rempe, G. Characterization of elastic scattering near a Feshbach resonance in 87Rb. Phys. Rev. A 68, 010702 (2003)

    ADS  Article  Google Scholar 

  27. 27

    Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995)

    MATH  Google Scholar 

  28. 28

    Berman, P. (ed.) Cavity Quantum Electrodynamics (Academic, New York, 1994)

  29. 29

    Hofstetter, W., Cirac, J. I., Zoller, P., Demler, E. & Lukin, M. D. High-temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407 (2002)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Lewenstein, M., Santos, L., Baranov, M. A. & Fehrmann, H. Atomic Bose-Fermi mixtures in an optical lattice. Phys. Rev. Lett. 92, 050401 (2004)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank H. Ritsch for discussions, and M. Theis and S. Schmid for help in setting up the experiment. We acknowledge support from the Austrian Science Fund (FWF) within the Spezialforschungsbereich 15, from the European Union within the OLAQUI and SCALA networks, from the TMR network ‘Cold Molecules’, and from the Tiroler Zukunftsstiftung. Author Contributions This work is a collaboration between teams of experimental (K.W., G.T., F.L., R.G. and J.H.D.) and theoretical (A.J.D., A.K., H.P.B. and P.Z.) physicists.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Hecker Denschlag.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Winkler, K., Thalhammer, G., Lang, F. et al. Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006). https://doi.org/10.1038/nature04918

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing