Letter | Published:

The magnetic nature of disk accretion onto black holes

Naturevolume 441pages953955 (2006) | Download Citation

Subjects

Abstract

Although disk accretion onto compact objects—white dwarfs, neutron stars and black holes—is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object1. Internal viscosity from magnetic processes1,2,3,4 and disk winds5 can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

  2. 2

    Balbus, S. A. & Hawley, J. F. A powerful local shear instability in weakly magnetized disks. Astrophys. J. 376, 214–233 (1991)

  3. 3

    Hawley, J. F., Gammie, C. F. & Balbus, S. A. Local three-dimensional magnetohydrodynamic solutions of accretion disks. Astrophys. J. 440, 742–763 (1995)

  4. 4

    Balbus, S. A. & Hawley, J. F. Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998)

  5. 5

    Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982)

  6. 6

    Orosz, J. & Bailyn, C. D. Optical observations of GRO J1655 - 40 in quiescence. I. A precise mass for the black hole primary. Astrophys. J. 477, 876–896 (1997)

  7. 7

    Hjellming, R. M. & Rupen, M. P. Episodic ejection of relativistic jets by the X-ray transient GRO J1655 - 40. Nature 375, 464–468 (1995)

  8. 8

    Dickey, J. M. & Lockman, F. J. H I in the Galaxy. Annu. Rev. Astron. Astrophys. 28, 215–261 (1990)

  9. 9

    Verner, D. A., Verner, E. M. & Ferland, G. J. Atomic data for permitted resonance lines of atoms and ions from H to Si, and S, Ar, Ca, and Fe. Atom. Data Nucl. Data Tables 64, 11–180 (1996)

  10. 10

    The NIST Atomic Spectra Database, Standard Reference Database 78. http://physics.nist.gov/cgi-bin/AtData/main.asd (2005).

  11. 11

    Nahar, S. & Pradhan, A. K. Atomic data from the Iron Project. XXXV. Relativistic fine structure oscillator strengths for Fe XXIV and Fe XXV. Astron. Astrophys. Suppl. 135, 347–357 (1999)

  12. 12

    Raymond, J. A model of an X-ray-illuminated accretion disk and corona. Astrophys. J. 412, 267–277 (1993)

  13. 13

    Miller, J. M. et al. Chandra/HETGS spectroscopy of the Galactic black hole GX 399 - 4: A relativistic iron emission line and evidence for a Seyfert-like warm absorber. Astrophys. J. 601, 450–465 (2004)

  14. 14

    Colgan, J., Pindzola, M. S. & Badnell, N. R. Dielectronic recombination data for dynamic finite-density plasmas. V: the lithium isoelectronic sequence. Astron. Astrophys. 417, 1183–1188 (2004)

  15. 15

    Spitzer, L. Physical Processes in the Interstellar Medium (Wiley, New York, 1978)

  16. 16

    Grevesse, N. & Sauval, A. J. in Solar Composition and its Evolution–from Core to Corona (eds Frölich, C., Huber, M. C. E., Solanski, S. K. & von Steiger, R.) 161–174 (Kluwer, Dordrecht, 1998)

  17. 17

    Vrtilek, S. et al. Observations of Cygnus X-2 with IUE—Ultraviolet results from a multi-wavelength campaign. Astron. Astrophys. 234, 162–173 (1990)

  18. 18

    Begelman, M. C., McKee, C. F. & Shields, G. A. Compton heated winds and coronae above accretion disks. II Dynamics. Astrophys. J. 271, 70–89 (1983)

  19. 19

    Chelouche, D. & Netzer, H. Dynamical and spectral modeling of the ionized gas and nuclear environment in NGC 3783. Astrophys. J. 625, 95–107 (2005)

  20. 20

    Proga, D., Stone, J. M. & Kallman, T. R. Dynamics of line-driven winds in active galactic nuclei. Astrophys. J. 543, 686–696 (2000)

  21. 21

    Miller, K. A. & Stone, J. M. The formation and structure of a strongly magnetized corona above a weakly magnetized accretion disk. Astrophys. J. 534, 398–419 (2000)

  22. 22

    Proga, D. Numerical simulations of mass outflows driven from accretion disks by radiation and magnetic forces. Astrophys. J. 585, 406–417 (2003)

  23. 23

    Spruit, H. C. in Physical Processes in Binary Stars (eds Wijers, R. A. M. J., Davies, M. B. & Tout, C. A.) 249–286 (NATO ASI Ser., Kluwer, Dordrecht, 1996)

  24. 24

    Calvet, N., Hartmann, L. & Kenyon, S. J. Mass loss from pre-main-sequence accretion disks. I—The accelerating wind of FU Orionis. Astrophys. J. 402, 623–634 (1993)

  25. 25

    Schulz, N. S. & Brandt, W. N. Variability of the X-ray P Cygni line profiles from Cicinus X-1 near zero phase. Astrophys. J. 572, 972–983 (2002)

  26. 26

    Mauche, C. W. & Raymond, J. C. Extreme Ultraviolet Explorer observations of OY Carinae in superoutburst. Astrophys. J. 541, 924–936 (2000)

  27. 27

    Konigl, A. & Kartje, J. F. Disk-driven hydromagnetic winds as a key ingredient of active galactic nuclei unification schemes. Astrophys. J. 434, 446–467 (1994)

  28. 28

    Everett, J. E. Radiative transfer and acceleration in magnetocentrifugal winds. Astrophys. J. 631, 689–706 (2005)

  29. 29

    Houck, J. C. & Denicola, L. A. ISIS: An interactive spectral interpretation system for high resolution X-ray spectroscopy. Astron. Soc. Pacif. Conf. Proc. 216, 591–594 (2000)

Download references

Acknowledgements

We acknowledge conversations with N. Calvet, L. Hartmann, D. Proga and M. Rupen. We are indebted to A. Prestwich, H. Tananbaum and the Chandra staff for help in making this observation possible. We thank B. Lauritsen for editorial insights. This work was supported by NASA through the Chandra guest observer programme (J.M.M.). Author Contributions J.M.M. analysed the Chandra data and wrote most of the paper. J.R. developed the photoionization model. J.M.M., J.R., A.F. and C.R. developed the interpretation of the data. D.S., J.H., M.K. and R.W. contributed insights on X-ray binaries and/or made supporting observations with other instruments. All others discussed the work at length, and contributed to the manuscript.

Author information

Affiliations

  1. Department of Astronomy, University of Michigan, Ann Arbor, 500 Church Street, Michigan, 48109, USA

    • Jon M. Miller
  2. Harvard-Smithsonian Center for Astrophysics, Cambridge, 60 Garden Street, Massachusetts, 02138, USA

    • John Raymond
    •  & Danny Steeghs
  3. Institute of Astronomy, University of Cambridge, Cambridge, CB3 OHA, UK

    • Andy Fabian
  4. Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts, 02139, USA

    • Jeroen Homan
  5. Department of Astronomy, University of Maryland, College Park, Maryland, 20742, USA

    • Chris Reynolds
  6. Astronomical Institute Anton Pannekoek, University of Amsterdam, Amsterdam, Kruislaan 403, 1098 SJ, The Netherlands

    • Michiel van der Klis
    •  & Rudy Wijnands

Authors

  1. Search for Jon M. Miller in:

  2. Search for John Raymond in:

  3. Search for Andy Fabian in:

  4. Search for Danny Steeghs in:

  5. Search for Jeroen Homan in:

  6. Search for Chris Reynolds in:

  7. Search for Michiel van der Klis in:

  8. Search for Rudy Wijnands in:

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Corresponding author

Correspondence to Jon M. Miller.

Supplementary information

  1. Supplementary Notes

    This file contains Supplementary Figures 1 and 2 and Supplementary Tables. (PDF 340 kb)

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nature04912

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.