Brief Communications Arising | Published:

Molecular spectroscopy

Complexity of excited-state dynamics in DNA

Naturevolume 441pageE7 (2006) | Download Citation



Arising from: C. E. Crespo-Hernández, B. Cohen & B. Kohler Nature 436, 1141–1144 (2005); Crespo-Hernández et al. reply

Absorption of ultraviolet light by DNA is known to lead to carcinogenic mutations, but the processes between photon absorption and the photochemical reactions are poorly understood. In their study of the excited-stated dynamics of model DNA helices using femtosecond transient absorption spectroscopy1, Crespo-Hernández et al. observe that the picosecond component of the transient signals recorded for the adenine–thymine oligonucleotide (dA)18·(dT)18 is close to that for (dA)18, but quite different from that for (dAdT)9·(dAdT)9; from this observation, they conclude that excimer formation limits excitation energy to one strand at a time. Here we use time-resolved fluorescence spectroscopy to probe the excited-state dynamics, which reveals the complexity of these systems and indicates that the interpretation of Crespo-Hernández et al. is an oversimplification. We also comment on the pertinence of separating base stacking and base pairing in excited-state dynamics of double helices and question the authors' assignment of the long-lived signal component found for (dA)18·(dT)18 to adenine excimers.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Crespo-Hernández, C. E., Cohen, B. & Kohler, B. Nature 436, 1141–1144 (2005).

  2. 2

    Markovitsi, D., Sharonov, A., Onidas, D. & Gustavsson, T. Chem. Phys. Chem. 3, 303–305 (2003).

  3. 3

    Markovitsi, D., Onidas, D., Gustavsson, T., Talbot, F. & Lazzarotto, E. J. Am. Chem. Soc. 127, 17130–17131 (2005).

  4. 4

    Bouvier, B., Gustavsson, T., Markovitsi, D. & Millié, P. Chem. Phys. 275, 75–92 (2002).

  5. 5

    Bouvier, B. et al. J. Phys. Chem. B 107, 13512–13522 (2003).

  6. 6

    Emanuele, E., Markovitsi, D., Millié, P. & Zakrzewska, K. Chem. Phys. Chem. 6, 1387–1392 (2005).

  7. 7

    Emanuele, E., Zakrzewska, K., Markovitsi, D., Lavery, R. & Millié, P. J. Phys. Chem. B 109, 16109–16118 (2005).

  8. 8

    Hartmann, B. & Lavery, R. Q. Rev. Biophys. 29, 309–368 (1996).

  9. 9

    Ge, G. & Georghiou, S. Photochem. Photobiol. 54, 301–305 (1991).

  10. 10

    Crespo-Hernández, C. E. & Kohler, B. J. Phys. Chem. B 108, 11182–11188 (2004).

  11. 11

    Starikov, E. B., Lewis, J. P. & Sankey, O. F. Int. J. Mod. Phys. B 19, 4331–4357 (2005).

  12. 12

    Kopka, M. L., Fratini, A. V., Drew, H. R. & Dickerson, R. E. J. Mol. Biol. 163, 129–146 (1983).

Download references

Author information


  1. Laboratoire Francis Perrin, CEA/DSM/DRECAM/SPAM–CNRS URA 2453, CEA Saclay, Gif-sur-Yvette, 91191, France

    • Dimitra Markovitsi
    • , Francis Talbot
    • , Thomas Gustavsson
    • , Delphine Onidas
    • , Elodie Lazzarotto
    •  & Sylvie Marguet


  1. Search for Dimitra Markovitsi in:

  2. Search for Francis Talbot in:

  3. Search for Thomas Gustavsson in:

  4. Search for Delphine Onidas in:

  5. Search for Elodie Lazzarotto in:

  6. Search for Sylvie Marguet in:

Corresponding author

Correspondence to Dimitra Markovitsi.

About this article

Publication history


Issue Date


Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.