Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Validating cancer drug targets

Abstract

A cancer drug target is only truly validated by demonstrating that a given therapeutic agent is clinically effective and acts through the target against which it was designed. Nevertheless, it is desirable to declare an early-stage drug target as ‘validated’ before investing in a full-scale drug discovery programme dedicated to it. Although the outcome of validation studies can guide cancer research programmes, strictly defined universal validation criteria have not been established.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Evolution of target-validation paradigms.
Figure 2: Schematic overview of the four cancer drug discovery tracks.

References

  1. Deininger, M., Buchdunger, E. & Druker, B. J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 1, 2640–2653 (2005).

    Article  Google Scholar 

  2. Emens, L. A. Trastuzumab: targeted therapy for the management of HER-2/neu-overexpressing metastatic breast cancer. Am. J. Ther. 12, 243–253 (2005).

    PubMed  Google Scholar 

  3. Weinstein, I. Addiction to oncogenes: the Achilles Heel of Cancer. Science 297, 63–65 (2002).

    CAS  Article  PubMed  Google Scholar 

  4. Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).

    ADS  CAS  Article  PubMed  Google Scholar 

  5. Kaelin, W. J. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689–698 (2005).

    CAS  Article  Google Scholar 

  6. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  7. Mills, G. P., Lu, Y. & Kohn, E. C. Linking molecular therapeutics to molecular diagnostics: inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 10031–10033 (2001).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. O'Neill, J., Manion, M., Schwartz, P. & Hockenbery, D. M. Promises and challenges of targeting Bcl-2 anti-apoptotic proteins for cancer therapy. Biochim. Biophys. Acta 1705, 43–51 (2004).

    CAS  PubMed  Google Scholar 

  9. Jensen, E. V. & Jordan, V. C. The estrogen receptor: a model for molecular medicine. Clin. Cancer Res. 9, 1980–1989 (2003).

    CAS  PubMed  Google Scholar 

  10. Jenster, G. The role of the androgen receptor in the development and progression of prostate cancer. Semin. Oncol. 26, 407–421 (1999).

    CAS  PubMed  Google Scholar 

  11. Pitha-Rowe, I., Petty, W. J., Kitareewan, S. & Dmitrovsky, E. Retinoid target genes in acute promyelocytic leukemia. Leukemia 17, 1723–1730 (2003).

    CAS  Article  PubMed  Google Scholar 

  12. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  13. Marx, J. Encouraging results for second generation anti-angiogenic drugs. Science 308, 1248–1249 (2005).

    CAS  Article  PubMed  Google Scholar 

  14. van Elsas, A. et al. Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am. J. Pathol. 149, 883–893 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Walker, F. & Olson, M. F. Targeting Ras and Rho GTPases as opportunities for cancer therapies. Curr. Opin. Genet. Dev. 15, 62–68 (2005).

    CAS  Article  PubMed  Google Scholar 

  16. Beeram, M., Patnaik, A. & Rowinsky, E. K. Raf: a strategic target for therapeutic development against cancer. J. Clin. Oncol. 23, 6771–6790 (2005).

    CAS  Article  PubMed  Google Scholar 

  17. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  18. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20 (2003).

    CAS  Article  PubMed  Google Scholar 

  19. Thompson, N. & Lyons, J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr. Opin. Pharmacol. 5, 350–356 (2005).

    CAS  Article  PubMed  Google Scholar 

  20. Janne, P. A., Engelman, J. A. & Johnson, B. E. Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. J. Clin. Oncol. 23, 3227–3234 (2005).

    CAS  Article  PubMed  Google Scholar 

  21. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–500 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  22. Rao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    ADS  Article  Google Scholar 

  23. Tsao, M. S. et al. Erlotinib in lung cancer: molecular and clinical predictors of outcome. N. Engl. J. Med. 353, 133–134 (2005).

    CAS  Article  PubMed  Google Scholar 

  24. Patel, J. D., Pasche, B. & Argiris, A. Targeting non-small cell lung cancer with epidermal growth factor tyrosine kinase inhibitors: where do we stand, where do we go. Crit. Rev. Oncol. Hematol. 50, 175–186 (2004).

    Article  PubMed  Google Scholar 

  25. Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. Engelman, J. A. et al. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc. Natl Acad. Sci. USA 102, 3788–3793 (2005).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Shih, C. & Weinberg, R. A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29, 161–169 (1982).

    CAS  Article  PubMed  Google Scholar 

  28. Silva, J., Chang, K., Hannon, G. J. & Rivas, F. V. RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23, 8401–8409 (2004).

    CAS  Article  PubMed  Google Scholar 

  29. Torrance, C. J., Agrawal, V., Vogelstein, B. & Kinzler, K. W. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nature Biotechnol. 19, 940–945 (2001).

    CAS  Article  Google Scholar 

  30. Kohli, M., Rago, C., Lengauer, C., Kinzler, K. W. & Vogelstein, B. Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res. 32, e3 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mazurier, F., Doedens, M., Gan, O. I. & Dick, J. E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD–SCID mice reveals a new class of human stem cells. Nature Med. 9, 959–963 (2003).

    CAS  Article  PubMed  Google Scholar 

  32. Brumby, A. M. & Richardson, H. E. Using Drosophila melanogaster to map human cancer pathways. Nature Rev. Cancer 5, 626–639 (2005).

    CAS  Article  Google Scholar 

  33. Amatruda, J. D., Shepard, J. L., Stern, H. M. & Zon, L. I. Zebrafish as a cancer model system. Cancer Cell 1, 229–231 (2002).

    CAS  Article  PubMed  Google Scholar 

  34. Simon, J. A. Yeast as a model system for anticancer drug discovery. Expert Opin. Ther. Targets 5, 177–195 (2001).

    CAS  PubMed  Google Scholar 

  35. Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    CAS  Article  PubMed  Google Scholar 

  36. Kamb, A. What's wrong with our cancer models? Nature Rev. Drug Discov. 4, 161–165 (2005).

    CAS  Article  Google Scholar 

  37. Sausville, E. A. Target selection issues in drug discovery and development. J. Chemother. Suppl. 16 (suppl. 4), 16–18 (2004).

    CAS  Article  Google Scholar 

  38. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    CAS  Article  PubMed  Google Scholar 

  39. Bachman, K. E. et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol. Ther. 3, 772–775 (2004).

    CAS  Article  PubMed  Google Scholar 

  40. Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7, 561–573 (2005).

    CAS  Article  PubMed  Google Scholar 

  41. Aoki, M., Jiang, H. & Vogt, P. K. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc. Natl Acad. Sci. USA 101, 13613–13617 (2004).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Lengauer, C., Diaz, L. A. & Saha, S. Cancer drug discovery through collaboration. Nature Rev. Drug Discov. 4, 375–380 (2005).

    CAS  Article  Google Scholar 

  43. Salloukh, H. F., Vowles, I., Heisterkamp, N., Groffen, J. & Laneuville, P. Early events in leukemogenesis in P190Bcr–abl transgenic mice. Oncogene 19, 4362–4374 (2000).

    CAS  Article  PubMed  Google Scholar 

  44. Lefevre, G. et al. Roles of stem cell factor/c-Kit and effects of Glivec/STI571 in human uveal melanoma cell tumorigenesis. J. Biol. Chem. 279, 31769–31779 (2004).

    CAS  Article  PubMed  Google Scholar 

  45. Mitsiades, C. S., Mitsiades, N. & Koutsilieris, M. The Akt pathway: molecular targets for anti-cancer drug development. Curr. Cancer Drug Targets 4, 235–256 (2004).

    CAS  Article  PubMed  Google Scholar 

  46. Kitayama, H. et al. Neoplastic transformation of normal hematopoietic cells by constitutively activating mutations of c-kit receptor tyrosine kinase. Blood 88, 995–1004 (1996).

    CAS  PubMed  Google Scholar 

  47. Cool, M., Depault, F. & Jolicoeur, P. Fine allelotyping of Erbb2-induced mammary tumors in mice reveals multiple discontinuous candidate regions of tumor-suppressor loci. Genes Chromosomes Cancer 45, 191–202 (2006).

    CAS  Article  PubMed  Google Scholar 

  48. Kang, C. S. et al. An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA (siRNA) targeting human epidermal growth factor receptor. J. Neurooncol. 73, 267–273 (2005).

    Article  Google Scholar 

  49. Kim, H. & Muller, W. J. The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp. Cell Res. 253, 78–87 (1999).

    CAS  Article  PubMed  Google Scholar 

  50. Early, E. et al. Transgenic expression of PML/RARα impairs myelopoiesis. Proc. Natl Acad. Sci. USA 93, 7900–7904 (1996).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Park, D. J., Vuong, P. T., de Vos, S., Douer, D. & Koeffler, H. P. Comparative analysis of genes regulated by PML/RARα and PLZF/RARα in response to retinoic acid using oligonucleotide arrays. Blood 102, 3727–3736 (2003).

    CAS  Article  PubMed  Google Scholar 

  52. Lewis, J. S. et al. Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation. J. Natl Cancer Inst. 97, 1746–1759 (2005).

    CAS  Article  PubMed  Google Scholar 

  53. Lu, M., Mira- y-Lopez, R., Nakajo, S., Nakaya, K. & Jing, Y. Expression of estrogen receptor α, retinoic acid receptor α and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. Oncogene 24, 4362–4269 (2005).

    CAS  Article  PubMed  Google Scholar 

  54. Yue, W. et al. Tamoxifen versus aromatase inhibitors for breast cancer prevention. Clin. Cancer Res. 11, 9225s–9230s (2005).

    Google Scholar 

  55. Nair, H. B. et al. Induction of aromatase expression in cervical carcinomas: effects of endogenous estrogen on cervical cancer cell proliferation. Cancer Res. 65, 11164–11173 (2005).

    CAS  Article  PubMed  Google Scholar 

  56. Ratliff, T. L. Mutation of the androgen receptor causes oncogenic transformation of the prostate. J. Urol. 174, 1149 (2005).

    PubMed  Google Scholar 

  57. Tao, J. et al. Inhibiting the growth of malignant melanoma by blocking the expression of vascular endothelial growth factor using an RNA interference approach. Br. J. Dermatol. 153, 715–724 (2005).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors are employed by the Novartis Institutes for BioMedical Research.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benson, J., Chen, YN., Cornell-Kennon, S. et al. Validating cancer drug targets. Nature 441, 451–456 (2006). https://doi.org/10.1038/nature04873

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04873

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing