Letter | Published:

Nuclear pore association confers optimal expression levels for an inducible yeast gene

Naturevolume 441pages774778 (2006) | Download Citation



The organization of the nucleus into subcompartments creates microenvironments that are thought to facilitate distinct nuclear functions1. In budding yeast, regions of silent chromatin, such as those at telomeres and mating-type loci, cluster at the nuclear envelope creating zones that favour gene repression1,2. Other reports indicate that gene transcription occurs at the nuclear periphery, apparently owing to association of the gene with nuclear pore complexes3,4,5. Here we report that transcriptional activation of a subtelomeric gene, HXK1 (hexokinase isoenzyme 1), by growth on a non-glucose carbon source led to its relocalization to nuclear pores. This relocation required the 3′ untranslated region (UTR), which is essential for efficient messenger RNA processing and export, consistent with an accompanying report6. However, activation of HXK1 by an alternative pathway based on the transactivator VP16 moved the locus away from the nuclear periphery and abrogated the normal induction of HXK1 by galactose. Notably, when we interfered with HXK1 localization by either antagonizing or promoting association with the pore, transcript levels were reduced or enhanced, respectively. From this we conclude that nuclear position has an active role in determining optimal gene expression levels.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Taddei, A., Hediger, F., Neumann, F. R. & Gasser, S. M. The function of nuclear architecture: a genetic approach. Annu. Rev. Genet. 38, 305–345 (2004)

  2. 2

    Andrulis, E. D., Neiman, A. M., Zappulla, D. C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 395, 592–595 (1998)

  3. 3

    Casolari, J. M. et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117, 427–439 (2004)

  4. 4

    Brickner, J. H. & Walter, P. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol. 2, e342 (2004)

  5. 5

    Rodriguez-Navarro, S. et al. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116, 75–86 (2004)

  6. 6

    Cabal, G. G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature doi:10.1038/nature04752 (this issue)

  7. 7

    Hediger, F., Neumann, F. R., Van Houwe, G., Dubrana, K. & Gasser, S. M. Live imaging of telomeres. yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol. 12, 2076–2089 (2002)

  8. 8

    Taddei, A., Hediger, F., Neumann, F. R., Bauer, C. & Gasser, S. M. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J. 23, 1301–1312 (2004)

  9. 9

    Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134, 1349–1363 (1996)

  10. 10

    Blobel, G. Gene gating: a hypothesis. Proc. Natl Acad. Sci. USA 82, 8527–8529 (1985)

  11. 11

    Robinett, C. et al. In vivo localization of DNA sequences and visualization of large scale chromatin organization using lac-operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996)

  12. 12

    Heun, P., Laroche, T., Shimada, K., Furrer, P. & Gasser, S. M. Chromosome dynamics in the yeast interphase nucleus. Science 294, 2181–2186 (2001)

  13. 13

    de la Cera, T., Herrero, P., Moreno-Herrero, F., Chaves, R. S. & Moreno, F. Mediator factor Med8p interacts with the hexokinase 2: implication in the glucose signalling pathway of Saccharomyces cerevisiae. J. Mol. Biol. 319, 703–714 (2002)

  14. 14

    Rodriguez, A., de la Cera, T., Herrero, P. & Moreno, F. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem. J. 355, 625–631 (2001)

  15. 15

    Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4–VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988)

  16. 16

    Tham, W. H., Wyithe, J. S., Ko Ferrigno, P., Silver, P. A. & Zakian, V. A. Localization of yeast telomeres to the nuclear periphery is separable from transcriptional repression and telomere stability functions. Mol. Cell 8, 189–199 (2001)

  17. 17

    Hediger, F., Berthiau, A. S., van Houwe, G., Gilson, E. & Gasser, S. M. Subtelomeric factors antagonize telomere anchoring and Tel1-independent telomere length regulation. EMBO J. 25, 857–867 (2006)

  18. 18

    Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109, 551–562 (2002)

  19. 19

    Menon, B. B. et al. Reverse recruitment: the Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation. Proc. Natl Acad. Sci. USA 102, 5749–5754 (2005)

  20. 20

    Gill, G. & Ptashne, M. Negative effect of the transcriptional activator GAL4. Nature 334, 721–724 (1988)

  21. 21

    Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001)

  22. 22

    Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

  23. 23

    O'Sullivan, J. M. et al. Gene loops juxtapose promoters and terminators in yeast. Nature Genet. 36, 1014–1018 (2004)

  24. 24

    Hediger, F., Taddei, A., Neumann, F. R. & Gasser, S. M. Methods for visualizing chromatin dynamics in living yeast. Methods Enzymol. 375, 345–365 (2004)

  25. 25

    Sage, D., Neumann, F. R., Hediger, F., Gasser, S. M. & Unser, M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans. Image Process. 14, 1372–1383 (2005)

  26. 26

    Gartenberg, M. R., Neumann, F. R., Laroche, T., Blaszczyk, M. & Gasser, S. M. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119, 955–967 (2004)

  27. 27

    Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1–research0034.11 (2002)

  28. 28

    Schmid, M. et al. Nup-PI: The nucleopore-promoter interaction of genes in yeast. Mol Cell 21, 379–391 (2006)

Download references


We thank T. Laroche, the imaging platform of the FMI, and the genomics platform of the NCCR for assistance, and E. Heard, A. Peters, G. Almouzni, D. Schübeler and M. Gartenberg for helpful suggestions, as well as G. Cabal and U. Nehrbass for sharing unpublished results. Our research is supported by the Swiss National Science Foundation, the NCCR programme ‘Frontiers in Genetics’, and the Novartis Research Foundation.

Author information


  1. Friedrich Miescher Institute for Biomedical Research, Basel, Maulbeerstrasse 66, CH-4058, Switzerland

    • Angela Taddei
    • , Florence Hediger
    • , Veronique Kalck
    • , Fabien Cubizolles
    • , Heiko Schober
    •  & Susan M. Gasser
  2. UMR 218, Centre National de la Recherche Scientifique/Institut Curie-Section de Recherche, 26 rue d'Ulm, 75231 Cedex 05, Paris, France

    • Angela Taddei
  3. University of Geneva, NCCR Frontiers in Genetics, Quai Ernest-Ansermet 30, CH-1211 4, Geneva, Switzerland

    • Griet Van Houwe
    • , Heiko Schober
    •  & Susan M. Gasser


  1. Search for Angela Taddei in:

  2. Search for Griet Van Houwe in:

  3. Search for Florence Hediger in:

  4. Search for Veronique Kalck in:

  5. Search for Fabien Cubizolles in:

  6. Search for Heiko Schober in:

  7. Search for Susan M. Gasser in:

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Corresponding author

Correspondence to Susan M. Gasser.

Supplementary information

  1. Supplementary Notes

    This file contains Supplementary Tables 1–3 and Supplementary Figure Legends. (DOC 70 kb)

  2. Supplementary Figure 1

    Abundance of the elongation-specific form of the RNA pol II on HXK1. (PDF 17 kb)

  3. Supplementary Figure 2

    HXK1 dynamics on glucose versus galactose media. (PDF 42 kb)

  4. Supplementary Figure 3

    Targeted VP16 allows variegated expression of subtelomeric ADE2 gene. (PDF 32 kb)

  5. Supplementary Figure 4

    VP16 targeting increases HXK1 dynamics. (PDF 35 kb)

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.