Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Top-down gain control of the auditory space map by gaze control circuitry in the barn owl

Abstract

High-level circuits in the brain that control the direction of gaze are intimately linked with the control of visual spatial attention1,2,3,4,5. Immediately before an animal directs its gaze towards a stimulus, both psychophysical sensitivity to that visual stimulus and the responsiveness of high-order neurons in the cerebral cortex that represent the stimulus increase dramatically3,6,7. Equivalent effects on behavioural sensitivity and neuronal responsiveness to visual stimuli result from focal electrical microstimulation of gaze control centres in monkeys8,9,10,11. Whether the gaze control system modulates neuronal responsiveness in sensory modalities other than vision is unknown. Here we show that electrical microstimulation applied to gaze control circuitry in the forebrain of barn owls regulates the gain of midbrain auditory responses in an attention-like manner. When the forebrain circuit was activated, midbrain responses to auditory stimuli at the location encoded by the forebrain site were enhanced and spatial selectivity was sharpened. The same stimulation suppressed responses to auditory stimuli represented at other locations in the midbrain map. Such space-specific, top-down regulation of auditory responses by gaze control circuitry in the barn owl suggests that the central nervous system uses a common strategy for dynamically regulating sensory gain that applies across modalities, brain areas and classes of vertebrate species. This approach provides a path for discovering mechanisms that underlie top-down gain control in the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of electrical microstimulation in the AGF on auditory responses at an aligned site in the optic tectum.
Figure 2: Effect of AGF microstimulation on a non-aligned site in the optic tectum.
Figure 3: Summary of the effects of AGF microstimulation on auditory responses in the optic tectum.

Similar content being viewed by others

References

  1. Moore, T., Armstrong, K. M. & Fallah, M. Visuomotor origins of covert spatial attention. Neuron 40, 671–683 (2003)

    Article  CAS  Google Scholar 

  2. Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25, 31–40 (1987)

    Article  CAS  Google Scholar 

  3. Hoffman, J. E. & Subramaniam, B. The role of visual attention in saccadic eye movements. Percept. Psychophys. 57, 787–795 (1995)

    Article  CAS  Google Scholar 

  4. Shepherd, M., Findlay, J. M. & Hockey, R. J. The relationship between eye movements and spatial attention. Q. J. Exp. Psychol. A 38, 475–491 (1986)

    Article  CAS  Google Scholar 

  5. Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc. Natl Acad. Sci. USA 95, 831–838 (1998)

    Article  CAS  ADS  Google Scholar 

  6. Moore, T., Tolias, A. S. & Schiller, P. H. Visual representations during saccadic eye movements. Proc. Natl Acad. Sci. USA 95, 8981–8984 (1998)

    Article  CAS  ADS  Google Scholar 

  7. Fischer, B. & Boch, R. Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Exp. Brain Res. 44, 129–137 (1981)

    Article  CAS  Google Scholar 

  8. Muller, J. R., Philiastides, M. G. & Newsome, W. T. Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl Acad. Sci. USA 102, 524–529 (2005)

    Article  ADS  Google Scholar 

  9. Moore, T. & Armstrong, K. M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003)

    Article  CAS  ADS  Google Scholar 

  10. Moore, T. & Fallah, M. Microstimulation of the frontal eye field and its effects on covert spatial attention. J. Neurophysiol. 91, 152–162 (2004)

    Article  Google Scholar 

  11. Cavanaugh, J. & Wurtz, R. H. Subcortical modulation of attention counters change blindness. J. Neurosci. 24, 11236–11243 (2004)

    Article  CAS  Google Scholar 

  12. Rorden, C. & Driver, J. Does auditory attention shift in the direction of an upcoming saccade? Neuropsychologia 37, 357–377 (1999)

    Article  CAS  Google Scholar 

  13. Hikosaka, O. & Wurtz, R. H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol. 49, 1230–1253 (1983)

    Article  CAS  Google Scholar 

  14. Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. II. Visual and auditory responses. J. Neurophysiol. 61, 799–813 (1989)

    Article  CAS  Google Scholar 

  15. Knudsen, E. I. & Knudsen, P. F. Contribution of the forebrain archistriatal gaze fields to auditory orienting behaviour in the barn owl. Exp. Brain Res. 108, 23–32 (1996)

    Article  CAS  Google Scholar 

  16. Knudsen, E. I., Cohen, Y. E. & Masino, T. Characterization of a forebrain gaze field in the archistriatum of the barn owl: microstimulation and anatomical connections. J. Neurosci. 15, 5139–5151 (1995)

    Article  CAS  Google Scholar 

  17. Stanton, G. B., Goldberg, M. E. & Bruce, C. J. Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. J. Comp. Neurol. 271, 493–506 (1988)

    Article  CAS  Google Scholar 

  18. Bruce, C. J., Goldberg, M. E., Bushnell, M. C. & Stanton, G. B. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734 (1985)

    Article  CAS  Google Scholar 

  19. Dias, E. C. & Segraves, M. A. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J. Neurophysiol. 81, 2191–2214 (1999)

    Article  CAS  Google Scholar 

  20. Knudsen, E. I. & Knudsen, P. F. Disruption of auditory spatial working memory by inactivation of the forebrain archistriatum in barn owls. Nature 383, 428–431 (1996)

    Article  CAS  ADS  Google Scholar 

  21. Knudsen, E. I. Auditory and visual maps of space in the optic tectum of the owl. J. Neurosci. 2, 1177–1194 (1982)

    Article  CAS  Google Scholar 

  22. Olsen, J. F., Knudsen, E. I. & Esterly, S. D. Neural maps of interaural time and intensity differences in the optic tectum of the barn owl. J. Neurosci. 9, 2591–2605 (1989)

    Article  CAS  Google Scholar 

  23. Cohen, Y. E. & Knudsen, E. I. Binaural tuning of auditory units in the forebrain archistriatal gaze fields of the barn owl: local organization but no space map. J. Neurosci. 15, 5152–5168 (1995)

    Article  CAS  Google Scholar 

  24. Harper, N. S. & McAlpine, D. Optimal neural population coding of an auditory spatial cue. Nature 430, 682–686 (2004)

    Article  CAS  ADS  Google Scholar 

  25. Reynolds, J. H. & Chelazzi, L. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27, 611–647 (2004)

    Article  CAS  Google Scholar 

  26. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993)

    Article  CAS  Google Scholar 

  27. Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioural and neuronal performance. Science 240, 338–340 (1988)

    Article  CAS  ADS  Google Scholar 

  28. McAdams, C. J. & Maunsell, J. H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999)

    Article  CAS  Google Scholar 

  29. Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996)

    Article  CAS  ADS  Google Scholar 

  30. Miller, G. L. & Knudsen, E. I. Early visual experience shapes the representation of auditory space in the forebrain gaze fields of the barn owl. J. Neurosci. 19, 2326–2336 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bergan, M. Cohen, K. Maczko, T. Moore and I. Witten for reviews of earlier versions of the manuscript, and P. Knudsen for technical assistance. This work was supported by grants from the National Institutes of Health (E.I.K.) and an NRSA postdoctoral fellowship (D.E.W.) Author Contributions D.E.W. and E.I.K. designed the experiment and co-wrote the paper. D.E.W. carried out the electrophysiological recordings and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Winkowski.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkowski, D., Knudsen, E. Top-down gain control of the auditory space map by gaze control circuitry in the barn owl. Nature 439, 336–339 (2006). https://doi.org/10.1038/nature04411

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04411

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing