Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact origin of sediments at the Opportunity landing site on Mars

Abstract

Mars Exploration Rover Opportunity discovered sediments with layered structures thought to be unique to aqueous deposition and with minerals attributed to evaporation of an acidic salty sea. Remarkable iron-rich spherules were ascribed to later groundwater alteration, and the inferred abundance of water reinforced optimism that Mars was once habitable. The layered structures, however, are not unique to water deposition, and the scenario encounters difficulties in accounting for highly soluble salts admixed with less soluble salts, the lack of clay minerals from acid–rock reactions, high sphericity and near-uniform sizes of the spherules and the absence of a basin boundary. Here we present a simple alternative explanation involving deposition from a ground-hugging turbulent flow of rock fragments, salts, sulphides, brines and ice produced by meteorite impact. Subsequent weathering by intergranular water films can account for all of the features observed without invoking shallow seas, lakes or near-surface aquifers. Layered sequences observed elsewhere on heavily cratered Mars and attributed to wind, water or volcanism may well have formed similarly. If so, the search for past life on Mars should be reassessed accordingly.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nevada Test Site nuclear test explosion that produced crater Sedan.
Figure 2: Plots of surge deposit thickness versus radial distance.
Figure 3: Terrestrial surge deposits compared with cross-stratified martian deposits.
Figure 4: Martian strata compared with terrestrial surge strata.
Figure 5: Martian spherules compared with terrestrial accretionary lapilli and impact spherules.

References

  1. Squyres, S. W. et al. The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars. Science 306, 1698–1703 (2004)

    ADS  CAS  Article  Google Scholar 

  2. Squyres, S. W. et al. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 1709–1714 (2004)

    ADS  CAS  Article  Google Scholar 

  3. Christensen, P. R. et al. Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science 306, 1733–1739 (2004)

    ADS  CAS  Article  Google Scholar 

  4. Kerr, R. A. On Mars, a second chance for life. Science 306, 2010–2012 (2004)

    Article  Google Scholar 

  5. Carlson, R. H. & Roberts, W. A. Ejecta Studies, Project Sedan (PNE-217P, University of California Lawrence Radiation Laboratory, Livermore, California, 1962)

    Google Scholar 

  6. Glasstone, S. & Dolan, P. J. The Effects of Nuclear Weapons 3rd edn (US Department of Defense and Energy Research and Development Administration, Washington DC, 1977)

    Google Scholar 

  7. Wohletz, K. H. in Developments in Volcanology, from Magma to Tephra, Modelling Physical Processes of Explosive Volcanic Eruptions (eds Freundt, A. & Rosi, M.) 247–312 (Elsevier, Amsterdam, 1998)

    Google Scholar 

  8. Melosh, H. J. Impact Cratering (Oxford University Press, New York, 1989)

    Google Scholar 

  9. Dressler, B. O., Sharpton, V. L., Schwandt, C. S. & Ames, D. Impactites of the Yaxcopoil-1 drilling site, Chicxulub impact structure: Petrography, geochemistry, and depositional environment. Meteorit. Planet. Sci. 39, 857–878 (2004)

    ADS  CAS  Article  Google Scholar 

  10. Oberbeck, V. R. The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev. Geophys. Space Phys. 13, 337–362 (1975)

    ADS  Article  Google Scholar 

  11. Schultz, P. H. & Gault, D. E. Atmospheric effects on Martian ejecta emplacements. J. Geophys. Res. 84, 7669–7687 (1979)

    ADS  Article  Google Scholar 

  12. Carr, M. H. et al. Martian impact craters and emplacement of ejecta by surface flow. J. Geophys. Res. 82, 4055–4065 (1977)

    ADS  Article  Google Scholar 

  13. Osinski, G. R., Grieve, R. A. F. & Spray, J. G. The nature of the groundmass of surficial suevite from the Ries impact structure, Germany, and constraints on its origin. Meteorit. Planet. Sci. 39, 1655–1683 (2004)

    ADS  CAS  Article  Google Scholar 

  14. Wohletz, K. H. & Sheridan, M. F. Martian rampart crater ejecta: Experiments and analysis of melt-water interaction. Icarus 56, 15–37 (1983)

    ADS  Article  Google Scholar 

  15. Knauth, L. P. & Burt, D. M. Eutectic brines on Mars: Origin and possible relation of young seepage features. Icarus 158, 267–271 (2002)

    ADS  CAS  Article  Google Scholar 

  16. McGetchin, T. R., Settle, M. & Head, J. W. Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth Planet. Sci. Lett. 20, 226–236 (1973)

    ADS  Article  Google Scholar 

  17. Garvin, J. B., Sakimoto, S. E. H., Frawley, J. J. & Schnetzler, C. Global geometric properties of Martian impact craters. Lunar Planet. Sci. 33, abstr. 1255 (2002)

  18. Sheridan, M. F. & Wohletz, K. H. in Microbeam Analysis (ed. Gooley, R.) 35–38 (Univ. San Francisco Press, San Francisco, 1983)

    Google Scholar 

  19. Kieffer, S. W. & Simonds, C. H. The role of volatiles and lithology in the impact cratering process. Rev. Geophys. Space Phys. 18, 143–181 (1980)

    ADS  CAS  Article  Google Scholar 

  20. Valentine, G. A., Buesch, D. & Fisher, R. V. Basal layered deposits of the Peach Springs Tuff, northwestern Arizona, USA. Bull. Volcanol. 51, 395–414 (1983)

    ADS  Article  Google Scholar 

  21. Mitchell, D. E., Sakimoto, S. E. H. & Garvin, J. B. MOLA topography and morphometry of rampart and pedestal craters, Mars. Lunar Planet. Sci. 33, abstr. 1805 (2002)

  22. Melosh, H. J. Impact ejecta sedimentation processes in the atmosphere and ocean. Meteorit. Planet. Sci. 39, abstr. 67 (2004)

  23. Fisher, R. V. & Walters, A. C. Base-surge bed forms in maar volcanoes. Am. J. Sci. 268, 157–180 (1970)

    ADS  Article  Google Scholar 

  24. Fisher, R. V. & Schmincke, H.-U. Pyroclastic Rocks 249–256 (Springer, New York, 1984)

    Book  Google Scholar 

  25. Hunt, C. B., Robinson, T. W., Bowles, W. A., Washburn, A. L. & Hunt, C. Hydrologic Basin, Death Valley, California (Professional Paper 494-B, US Geological Survey, Washington DC, 1966)

    Book  Google Scholar 

  26. Bullock, M. A. & Moore, J. M. Aqueous alteration of Mars-analog rocks under an acidic atmosphere. Geophys. Res. Lett. 31, L14701, doi:10.1029/2004GL019980 (2004)

    ADS  Article  Google Scholar 

  27. Golombek, M. P. et al. Selection of the Mars Exploration Rover landing sites. J. Geophys. Res. 108, 8072, doi:10.1029/2003JE002074 (2003)

    Google Scholar 

  28. Baker, V. R. Water and the Martian landscape. Nature 412, 228–236 (2001)

    ADS  CAS  Article  Google Scholar 

  29. Jakosky, B. M. & Phillips, R. J. Mars' volatile and climate history. Nature 412, 237–244 (2001)

    ADS  CAS  Article  Google Scholar 

  30. Burt, D. M. & Knauth, L. P. Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. J. Geophys. Res. 108, 8026, doi:10.1029/2002JE001862 (2003)

    Article  Google Scholar 

  31. Christensen, P. R. & Ruff, S. W. Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water. J. Geophys. Res. 109, EO8003, doi:10.1029/2003JE002233 (2004)

    ADS  Article  Google Scholar 

  32. Hynek, B. M., Arvidson, R. E. & Phillips, R. J. Geologic setting and origin of Terra Meridiani hematite deposit on Mars. J. Geophys. Res. 107, 5088, doi:10.1029/2002JE001891 (2002)

    Article  Google Scholar 

  33. Boistelle, R. & Astier, J. P. Crystallization mechanisms in solution. J. Cryst. Growth 90, 14–30 (1988)

    ADS  CAS  Article  Google Scholar 

  34. Chan, M. A., Breitler, B., Parry, W. T., Ormo, J. & Komatsu, G. A possible terrestrial analogue for haematite concretions on Mars. Nature 429, 731–734 (2004)

    ADS  CAS  Article  Google Scholar 

  35. Graup, G. Terrestrial chondrules, glass spherules and accretionary lapilli from the suevite, Ries Crater, Germany. Earth Planet. Sci. Lett. 55, 407–418 (1981)

    ADS  CAS  Article  Google Scholar 

  36. Bohor, B. F. & Glass, B. P. Origin and diagenesis of K/T impact spherules—From Haiti to Wyoming and beyond. Meteoritics 30, 182–198 (1995)

    ADS  CAS  Article  Google Scholar 

  37. Schumacher, R. & Schmincke, H.-U. Models for the origin of accretionary lapilli. Bull. Volcanol. 56, 626–639 (1995)

    ADS  Article  Google Scholar 

  38. Catling, D. C. & Moore, J. M. The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars. Icarus 165, 277–300 (2003)

    ADS  CAS  Article  Google Scholar 

  39. Wohletz, K. H. & McQueen, R. G. Volcanic and stratospheric dust-like particles produced by experimental water-melt interactions. Geology 12, 591–594 (1984)

    ADS  CAS  Article  Google Scholar 

  40. Lowe, D. R. et al. Characteristics, origin, and interpretation of Archean impact-produced spherule beds, 3.47–3.22 Ga, in the Barberton Greenstone Belt, South Africa: Keys to the role of large impacts on the evolution of the early Earth. Astrobiology 3, 7–48 (2003)

    ADS  Article  Google Scholar 

  41. Brueckner, J. et al. Hematite on the surface of Meridiani Planum and Gusev Crater. Lunar Planet. Sci. 36, abstr. 1767 (2005)

  42. Klingelhofer, G. et al. Jarosite and hematite at Meridiani Planum from Opportunity's Moessbauer spectrometer. Science 306, 1740–1745 (2004)

    ADS  CAS  Article  Google Scholar 

  43. Ditrizac, J. E. & Jambor, J. L. Jarosites and their application in hydrometallurgy. Rev. Mineral. Geochem. 40, 405–452 (2000)

    Article  Google Scholar 

  44. Burns, R. G. & Fisher, D. S. Evolution of sulfide mineralization on Mars. J. Geophys. Res. 95, 14169–14173 (1990)

    ADS  Article  Google Scholar 

  45. Cas, R. A. F. & Wright, J. V. Volcanic Successions Modern and Ancient (Chapman & Hall, London, 1987)

    Book  Google Scholar 

  46. McPhie, J., Walker, G. P. L. & Christiansen, R. L. Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii, 1790 A.D. Bull. Volcanol. 52, 334–354 (1990)

    ADS  Article  Google Scholar 

  47. Golombek, M. P. et al. Climate change from the Mars Exploration Rover landing sites: From wet in the Noachian to dry and desicating since the Hesperian. Lunar Planet. Sci. 36, abstr. 1539 (2005)

  48. Gendrin, A. et al. Sulfates in Martian layered terrains: The OMEGA/Mars Express view. Science 307, 1587–1591 (2005)

    ADS  CAS  Article  Google Scholar 

  49. Knauth, L. P., Brilli, M. & Klonowski, S. Isotope geochemistry of caliche on basalt. Geochim. Cosmochim. Acta 67, 185–195 (2003)

    ADS  CAS  Article  Google Scholar 

  50. Lowe, D. R. & Knauth, L. P. The oldest marine carbonate ooids reinterpreted as volcanic accretionary lapilli, Onverwacht Group, South Africa. J. Sedim. Petrol. 48, 709–722 (1978)

    Google Scholar 

Download references

Acknowledgements

L.P.K. is supported by the NASA Exobiology Program. We thank C. Moore for supplying the iron condensation spherules from Meteor crater, and G. R. Osinski for comments on an early version of the manuscript. Author Contributions All authors contributed equally to the ideas and interpretations. L.P.K. wrote the initial draft and managed revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Paul Knauth.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knauth, L., Burt, D. & Wohletz, K. Impact origin of sediments at the Opportunity landing site on Mars. Nature 438, 1123–1128 (2005). https://doi.org/10.1038/nature04383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04383

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing