Abstract
Techniques to facilitate controlled interactions between single photons and atoms are now being actively explored1,2,3,4,5,6,7. These techniques are important for the practical realization of quantum networks, in which multiple memory nodes that utilize atoms for generation, storage and processing of quantum states are connected by single-photon transmission in optical fibres1,2. One promising avenue for the realization of quantum networks involves the manipulation of quantum pulses of light in optically dense atomic ensembles using electromagnetically induced transparency (EIT, refs 8, 9). EIT is a coherent control technique that is widely used for controlling the propagation of classical, multi-photon light pulses10,11,12,13,14 in applications such as efficient nonlinear optics15. Here we demonstrate the use of EIT for the controllable generation, transmission and storage of single photons with tunable frequency, timing and bandwidth. We study the interaction of single photons produced in a ‘source’ ensemble of 87Rb atoms at room temperature with another ‘target’ ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Lifetime reductions and read-out oscillations due to imperfect initial level preparations of atoms in a long-lived DLCZ-like quantum memory
Applied Physics B Open Access 11 October 2022
-
Topological nonlinear optics with spin-orbit coupled Bose-Einstein condensate in cavity
npj Quantum Information Open Access 09 September 2022
-
High-performance cavity-enhanced quantum memory with warm atomic cell
Nature Communications Open Access 02 May 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Briegel, H. J., Dur, W., van Enk, S. J., Cirac, J. I. & Zoller, P. in The Physics of Quantum Information (eds Bouwmeester, D., Ekert, A. & Zeilinger, A.) 281–293 (Springer, Berlin, 2000)
Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)
Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003)
van der Wal, C. H. et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003)
McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)
Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)
Julsgaard, B., Sherson, J., Cirac, J. I., Fiurasek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004)
Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)
Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)
Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)
Kash, M. M. et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999)
Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)
Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)
Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005)
Braje, D. A., Balić, V., Yin, G. Y. & Harris, S. E. Low-light-level nonlinear optics with slow light. Phys. Rev. A 68, 041801(R) (2003)
Chou, C. W., Polyakov, S. V., Kuzmich, A. & Kimble, H. J. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004)
Eisaman, M. D. et al. Shaping quantum pulses of light via coherent atomic memory. Phys. Rev. Lett. 93, 233602 (2004)
Jiang, W., Han, C., Xue, P., Duan, L.-M. & Guo, G.-C. Nonclassical photon pairs generated from a room-temperature atomic ensemble. Phys. Rev. A 69, 043819 (2004)
Balić, V., Braje, D. A., Kolchin, P., Yin, G. Y. & Harris, S. E. Generation of paired photons with controllable waveforms. Phys. Rev. Lett. 94, 183601 (2005)
Matsukevich, D. N. & Kuzmich, A. Quantum state transfer between matter and light. Science 306, 663–666 (2004)
Matsukevich, D. N. et al. Entanglement of a photon and a collective atomic excitation. Phys. Rev. Lett. 95, 040405 (2005)
Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995)
Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)
Eisaman, M. D. et al. in Fluctuations and Noise in Photonics and Quantum Optics III Vol. 5,842 (eds Hemmer, P. R., Gea-Banacloche, J. R., Heszler, P. & Zubairy, M. S.) 105–113 (SPIE, Bellingham, Washington, 2005)
Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)
Akamatsu, D., Akiba, K. & Kozuma, M. Electromagnetically induced transparency with squeezed vacuum. Phys. Rev. Lett. 92, 203602 (2004)
Black, A. T., Thompson, J. K. & Vuletić, V. On-demand superradiant conversion of atomic spin gratings into single photons with high efficiency. Phys. Rev. Lett. 95, 133601 (2005)
Scully, M. O. & Ooi, C. H. R. Improving quantum microscopy and lithography via Raman photon pairs: II. Analysis. J. Opt. B 6, S816–S820 (2004)
André, A., Bajcsy, M., Zibrov, A. S. & Lukin, M. D. Nonlinear optics with stationary pulses of light. Phys. Rev. Lett. 94, 063902 (2005)
André, A. Nonclassical States of Light and Atomic Ensembles: Generation and New Applications PhD thesis, Harvard Univ. (2005)
Acknowledgements
We acknowledge T. Zibrova, A. Gorshkov, P. Hemmer, J. MacArthur, D. Phillips and R. Walsworth for discussions and experimental help. This work was supported by DARPA, the Packard and Sloan Foundations, and the NSF through the CAREER programme and the Harvard-MIT Center for Ultracold Atoms.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Eisaman, M., André, A., Massou, F. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005). https://doi.org/10.1038/nature04327
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature04327
This article is cited by
-
An actively tunable multifrequency electromagnetically induced transparency in a terahertz metamaterial
Optical and Quantum Electronics (2023)
-
High-performance cavity-enhanced quantum memory with warm atomic cell
Nature Communications (2022)
-
Topological nonlinear optics with spin-orbit coupled Bose-Einstein condensate in cavity
npj Quantum Information (2022)
-
Lifetime reductions and read-out oscillations due to imperfect initial level preparations of atoms in a long-lived DLCZ-like quantum memory
Applied Physics B (2022)
-
Room-temperature single-photon source with near-millisecond built-in memory
Nature Communications (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.