Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Origins of extrinsic variability in eukaryotic gene expression

Abstract

Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution1,2, determination of cell fates3,4 and the development of genetic disease5,6. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes simultaneously7,8,9,10, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modelling11,12,13,14,15,16,17,18 with fluorescence data generated from multiple promoter–gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous lower limit for expression variability. A second source, which is modelled as originating from a common upstream transcription factor, exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene9. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental results for GFP expression for different copy numbers and galactose concentrations.
Figure 2: Comparison of models A and B with experimental findings.

References

  1. 1

    Rao, C., Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Reanney, D. Genetic noise in evolution? Nature 307, 318–319 (2002)

    ADS  Article  Google Scholar 

  3. 3

    Sternberg, P. W. & Felix, M. Evolution of cell lineage. Curr. Opin. Genet. Dev. 7, 543–550 (1997)

    CAS  Article  Google Scholar 

  4. 4

    Grossman, A. D. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29, 477–508 (1995)

    CAS  Article  Google Scholar 

  5. 5

    Kemkemer, R., Schrank, S., Vogel, W., Gruler, H. & Kaufmann, D. Increased noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro. Proc. Natl Acad. Sci. USA 99, 13783–13788 (2002)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Cook, D. L., Gerber, A. N. & Tapscott, S. J. Modeling stochastic gene expression: Implications for haploinsufficiency. Proc. Natl Acad. Sci. USA 95, 15641 (1998)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Elowitz, M., Levine, A., Siggia, E. & Swain, P. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Kepler, T. & Elston, T. Stochasticity in transcriptional regulation: origins, consequences and mathematical representations. Biophys. J. 81, 3116–3136 (2001)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Blake, W. J., Kaern, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714–7719 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Kaern, M., Elston, T., Blake, W. & Collins, J. Stochasticity in gene expression: from theories to phenotypes. Nature Rev. Genet. 6, 451–464 (2005)

    CAS  Article  Google Scholar 

  18. 18

    Simpson, M. L., Cox, C. D. & Sayler, G. S. Frequency domain analysis of noise in autoregulated gene circuits. Proc. Natl Acad. Sci. USA 100, 4551–4556 (2003)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Hartwell, L. H. & Unger, M. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J. Cell Biol. 75, 422–435 (1977)

    CAS  Article  Google Scholar 

  20. 20

    Woldringh, C. L., Huls, P. G. & Vischer, N. E. Volume growth of daughter and parent cells during the cell cycle of Saccharomyces cerevisiae a/α as determined by image cytometry. J. Bacteriol. 175, 3174–3181 (1993)

    CAS  Article  Google Scholar 

  21. 21

    Cohen, B. A., Mitra, R. D., Hughes, J. D. & Church, G. A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nature Genet. 26, 183–186 (2000)

    CAS  Article  Google Scholar 

  22. 22

    Sheff, M. A. & Thorn, K. S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670 (2004)

    CAS  Article  Google Scholar 

  23. 23

    Adalsteinsson, D., McMillen, D. & Elston, T. Biochemical network stochastic simulator (bionets): Software for stochastic modeling of biochemical networks. BMC Bioinformatics 5, 24 (2004)

    Article  Google Scholar 

  24. 24

    Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF Division of Molecular and Cellular Bioscience and the Alfred P. Sloan Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeff Hasty.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Results, Supplementary Figures, Supplementary Tables and Supplementary Discussion. (PDF 337 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Volfson, D., Marciniak, J., Blake, W. et al. Origins of extrinsic variability in eukaryotic gene expression. Nature 439, 861–864 (2006). https://doi.org/10.1038/nature04281

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing