Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection

Abstract

Herpes simplex virus 2 (HSV-2) infection causes significant morbidity1 and is an important cofactor for the transmission of HIV infection2. A microbicide to prevent sexual transmission of HSV-2 would contribute substantially to controlling the spread of HIV and other infections3,4. Because RNA interference (RNAi) provides effective antiviral defence in plants and other organisms, several studies have focused on harnessing RNAi to inhibit viral infection5. Here we show that vaginal instillation of small interfering RNAs (siRNAs) targeting HSV-2 protects mice from lethal infection. siRNAs mixed with lipid are efficiently taken up by epithelial and lamina propria cells and silence gene expression in the mouse vagina and ectocervix for at least nine days. Intravaginal application of siRNAs targeting the HSV-2 UL27 and UL29 genes (which encode an envelope glycoprotein and a DNA binding protein6, respectively) was well tolerated, did not induce interferon-responsive genes or cause inflammation, and protected mice when administered before and/or after lethal HSV-2 challenge. These results suggest that siRNAs are attractive candidates for the active component of a microbicide designed to prevent viral infection or transmission.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: siRNAs administered intravaginally are efficiently taken up by vaginal tissue and durably silence endogenous EGFP expression.
Figure 2: siRNAs targeting HSV-2 reduce viral replication.
Figure 3: siRNAs protect mice from lethal HSV-2 infection.
Figure 4: Topical lipid-complexed siRNAs do not activate inflammation or interferon-responsive genes.

References

  1. Whitley, R. J. in Field's Virology (eds Knipe, D. M. & Howley, P. M.) 2461–2510 (Lippincott, Williams and Wilkins, Philadelphia, 2001)

    Google Scholar 

  2. Wald, A. & Link, K. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. J. Infect. Dis. 185, 45–52 (2002)

    Article  Google Scholar 

  3. Celum, C., Levine, R., Weaver, M. & Wald, A. Genital herpes and human immunodeficiency virus: double trouble. Bull. World Health Organ. 82, 447–453 (2004)

    PubMed  PubMed Central  Google Scholar 

  4. Pilcher, H. Starting to gel. Nature 430, 138–140 (2004)

    ADS  CAS  Article  Google Scholar 

  5. Shankar, P., Manjunath, N. & Lieberman, J. The prospect of silencing disease using RNA interference. J. Am. Med. Assoc. 293, 1367–1373 (2005)

    CAS  Article  Google Scholar 

  6. Roizman, B. & Knipe, D. M. in Field's Virology (eds Knipe, D. M. & Howley, P. M.) 2399–2440 (Lippincott, Williams and Wilkins, Philadelphia, 2001)

    Google Scholar 

  7. Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76, 79–90 (1998)

    CAS  Article  Google Scholar 

  8. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003)

    CAS  Article  Google Scholar 

  9. Boden, D., Pusch, O., Lee, F., Tucker, L. & Ramratnam, B. Human immunodeficiency virus type 1 escape from RNA interference. J. Virol. 77, 11531–11535 (2003)

    CAS  Article  Google Scholar 

  10. Gitlin, L., Stone, J. K. & Andino, R. Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches. J. Virol. 79, 1027–1035 (2005)

    CAS  Article  Google Scholar 

  11. Wilson, J. A. & Richardson, C. D. Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J. Virol. 79, 7050–7058 (2005)

    CAS  Article  Google Scholar 

  12. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834–839 (2003)

    CAS  Article  Google Scholar 

  13. Heidel, J. D., Hu, S., Liu, X. F., Triche, T. J. & Davis, M. E. Lack of interferon response in animals to naked siRNAs. Nature Biotechnol. 22, 1579–1582 (2004)

    CAS  Article  Google Scholar 

  14. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Med. 11, 263–270 (2005)

    CAS  Article  Google Scholar 

  15. Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol. 23, 457–462 (2005)

    CAS  Article  Google Scholar 

  16. Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl Acad. Sci. USA 101, 8676–8681 (2004)

    ADS  CAS  Article  Google Scholar 

  17. Tompkins, S. M., Lo, C. Y., Tumpey, T. M. & Epstein, S. L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl Acad. Sci. USA 101, 8682–8686 (2004)

    ADS  CAS  Article  Google Scholar 

  18. Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nature Med. 11, 50–55 (2005)

    CAS  Article  Google Scholar 

  19. Zhang, W. et al. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nature Med. 11, 56–62 (2005)

    ADS  CAS  Article  Google Scholar 

  20. Li, B. J. et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nature Med. 11, 944–951 (2005)

    ADS  CAS  Article  Google Scholar 

  21. Manoharan, M. RNA interference and chemically modified small interfering RNAs. Curr. Opin. Chem. Biol. 8, 570–579 (2004)

    CAS  Article  Google Scholar 

  22. Morrison, L. A., Da Costa, X. J. & Knipe, D. M. Influence of mucosal and parenteral immunization with a replication-defective mutant of HSV-2 on immune responses and protection from genital challenge. Virology 243, 178–187 (1998)

    CAS  Article  Google Scholar 

  23. Jones, C. A., Taylor, T. J. & Knipe, D. M. Biological properties of herpes simplex virus 2 replication-defective mutant strains in a murine nasal infection model. Virology 278, 137–150 (2000)

    CAS  Article  Google Scholar 

  24. Gao, M. & Knipe, D. M. Genetic evidence for multiple nuclear functions of the herpes simplex virus ICP8 DNA-binding protein. J. Virol. 63, 5258–5267 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Spang, A. E., Godowski, P. J. & Knipe, D. M. Characterization of herpes simplex virus 2 temperature-sensitive mutants whose lesions map in or near the coding sequences for the major DNA-binding protein. J. Virol. 45, 332–342 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Novina, C. D. et al. siRNA-directed inhibition of HIV-1 infection. Nature Med. 8, 681–686 (2002)

    CAS  Article  Google Scholar 

  27. Kaplan, E. L. & Meier, R. Non-parametric estimation from incomplete observation. J. Am. Stat. Assoc. 53, 457–481 (1958)

    Article  Google Scholar 

  28. Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163–170 (1966)

    CAS  PubMed  Google Scholar 

  29. Zeger, S. L. & Liang, K. Y. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121–130 (1986)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Colgrove, T. Taylor, E. Torres-Lopez, D. Brown and S. White for advice. This work was supported by grants from the NIH to D.M.K. and J.L., and by postdoctoral fellowships from the Harvard Center for AIDS Research and amfAR to D.P. and the Leukemia and Lymphoma Society to D.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy Lieberman.

Ethics declarations

Competing interests

Some of the authors have filed a patent application based on the work reported in this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Palliser, D., Chowdhury, D., Wang, QY. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89–94 (2006). https://doi.org/10.1038/nature04263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04263

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing