Discovery of the short γ-ray burst GRB 050709

Abstract

Gamma-ray bursts (GRBs) fall into two classes: short-hard and long-soft bursts1,2,3. The latter are now known to have X-ray4 and optical5 afterglows, to occur at cosmological distances6 in star-forming galaxies7, and to be associated with the explosion of massive stars8,9. In contrast, the distance scale, the energy scale and the progenitors of the short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow10 and (for the first time) the optical afterglow10,11 of a short-hard burst; this in turn led to the identification of the host galaxy of the burst as a late-type galaxy at z = 0.16 (ref. 10). These results show that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be caused by the merging of compact binaries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sky map showing the HETE localization error circles for GRB 050709 and the location of the X-ray and optical afterglow.
Figure 2: Time history of GRB 050709.
Figure 3: Time history of the short-hard pulse of GRB 050709.
Figure 4: Comparison of the observed count spectrum and the best-fit PLE model for the short-hard pulse of GRB 050709.

References

  1. 1

    Hurley, K. in Gamma-Ray Bursts (eds Paciesas, W. & Fishman, G.) 3 (AIP, New York, 1992)

    Google Scholar 

  2. 2

    Lamb, D. Q., Graziani, C. & Smith, I. Evidence for two distinct morphological classes of gamma-ray bursts from their short time scale variability. Astrophys. J. 413, L11–L14 (1993)

    CAS  Article  ADS  Google Scholar 

  3. 3

    Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993)

    CAS  Article  ADS  Google Scholar 

  4. 4

    Costa, E. et al. Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997. Nature 387, 783–784 (1997)

    CAS  Article  ADS  Google Scholar 

  5. 5

    van Paradijs, J. et al. Transient optical emission from the error box of the gamma-ray burst of 28 February 1997. Nature 386, 686–688 (1997)

    CAS  Article  ADS  Google Scholar 

  6. 6

    Metzger, M. R. et al. Spectral constraints on the redshift of the optical counterpart to the gamma-ray burst of 8 May 1997. Nature 387, 878–879 (1997)

    CAS  Article  ADS  Google Scholar 

  7. 7

    Castander, F. & Lamb, D. Q. A photometric investigation of the GRB 970228 afterglow and the associated nebulosity. Astrophys. J. 523, 593–601 (1999)

    Article  ADS  Google Scholar 

  8. 8

    Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993)

    CAS  Article  ADS  Google Scholar 

  9. 9

    Stanek, C. et al. Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys. J. 591, L17–L20 (2003)

    CAS  Article  ADS  Google Scholar 

  10. 10

    Fox, D. B. et al. The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts. Nature doi:10.1038/nature04189 (this issue)

  11. 11

    Hjorth, J. et al. The optical afterglow of the short γ-ray burst GRB 050709. Nature doi:10.1038/nature04174 (this issue)

  12. 12

    Ricker, G. R. et al. in Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission (eds Ricker, G. R. & Vanderspek, R. K.) 3–16 (AIP Press, New York, 2003)

    Google Scholar 

  13. 13

    Paciesas, W. et al. in Gamma-Ray Bursts in the Afterglow Era (eds Costa, E., Frontera, F. & Hjorth, J.) 13–15 (Springer, Berlin, 2000)

    Google Scholar 

  14. 14

    Ghirlanda, G., Ghisellini, G. & Celotti, A. The spectra of short gamma-ray bursts. Astron. Astrophys 422, L55–L58 (2004)

    CAS  Article  ADS  Google Scholar 

  15. 15

    Lamb, D. Q. et al. in Gamma-Ray Bursts in the Afterglow Era (eds Feroci, M., Frontera, F., Masetti, N. & Piro, L.) 94–97 (ASP, San Francisco, 2004)

    Google Scholar 

  16. 16

    Paciesas, W. et al. The Fourth BATSE Gamma-Ray Burst Catalog (revised). Astrophys. J. Suppl. 122, 465–495 (2000)

    Article  ADS  Google Scholar 

  17. 17

    Preece, R. et al. The BATSE Gamma-Ray Burst Spectral Catalog. I. High time resolution spectroscopy of bright bursts using high energy resolution data. Astrophys. J. Suppl. 126, 19–36 (2000)

    Article  ADS  Google Scholar 

  18. 18

    Frail, D. A. et al. Beaming in gamma-ray bursts: Evidence for a standard energy reservoir. Astrophys. J. 562, L55–L58 (2001)

    Article  ADS  Google Scholar 

  19. 19

    Amati, L. et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002)

    Article  ADS  Google Scholar 

  20. 20

    Lamb, D. Q. et al. Scientific highlights of the HETE-2 mission. New Astron. Rev. 48, 423–430 (2004)

    Article  ADS  Google Scholar 

  21. 21

    Yonetoku, D. et al. Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation. Astrophys. J. 609, 935–951 (2004)

    CAS  Article  ADS  Google Scholar 

  22. 22

    Lazzati, D., Ramirez-Ruiz, E. & Ghisellini, G. Possible detection of hard X-ray afterglows of short γ-ray bursts. Astron. Astrophys. 379, L39–L43 (2001)

    Article  ADS  Google Scholar 

  23. 23

    Frederiks, D. D. et al. in Gamma-Ray Bursts in the Afterglow Era (eds Feroci, M., Frontera, F., Masetti, N. & Piro, L.) 197–200 (ASP, San Francisco, 2004)

    Google Scholar 

  24. 24

    Connaughton, V. BATSE observations of gamma-ray burst tails. Astrophys. J. 567, 1028–1036 (2002)

    Article  ADS  Google Scholar 

  25. 25

    Hurley, K. et al. An exceptionally bright flare from SGR 1806-20 and the origin of short duration gamma-ray bursts. Nature 434, 1098–1103 (2005)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Palmer, D. M. et al. A giant gamma-ray flare from the magnetar SGR 1806-20. Nature 434, 1107–1109 (2005)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Gehrels, N. et al. A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225. Nature doi:10.1038/nature04142 (this issue)

  28. 28

    Bloom, J. et al. The observed offset distribution of gamma-ray bursts from their host galaxies: A robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002)

    Article  ADS  Google Scholar 

  29. 29

    Eicher, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989)

    Article  ADS  Google Scholar 

  30. 30

    Fryer, C. L., Woosley, S. E. & Hartmann, D. H. Formation rates of black hole accretion disk gamma-ray bursts. Astrophys. J. 526, 152–177 (1999)

    Article  ADS  Google Scholar 

  31. 31

    Reichart, D. E. et al. A possible Cepheid-like luminosity estimator for the long gamma-ray bursts. Astrophys. J. 552, 57 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported in the USA by NASA.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to J. S. Villasenor or G. R. Ricker.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Villasenor, J., Lamb, D., Ricker, G. et al. Discovery of the short γ-ray burst GRB 050709. Nature 437, 855–858 (2005). https://doi.org/10.1038/nature04213

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing