Microscopic artificial swimmers


Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns1. For example, bacterial flagella are helically shaped2 and driven at their bases by a reversible rotary engine3, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods4 and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip5,6,7. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic representation of a flexible magnetic filament.
Figure 2: Beating pattern of the motion of a magnetic flexible filament attached to a red blood cell.
Figure 3: Sequence of deformation of the end of a free filament.
Figure 4: Scaled velocity as a function of Sp.


  1. 1

    Bray, D. Cell Movements: from Molecules to Motility 6–12 (Garland Publ., New York, 1992)

    Google Scholar 

  2. 2

    Berg, H. C. & Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–384 (1973)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Schuster, S. C. & Khan, S. The bacterial flagellar motor. Annu. Rev. Biophys. Biomol. Struct. 23, 509–539 (1994)

    CAS  Article  Google Scholar 

  4. 4

    Gibbons, I. R. Cilia and flagella of eukaryotes. J. Cell Biol. 91, S107–S124 (1981)

    Article  Google Scholar 

  5. 5

    Satir, P. Studies on cilia. 3. Further studies on cilium tip and a sliding filament model of ciliary motility. J. Cell Biol. 39, 77–94 (1968)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Taylor, G. I. Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. Ser. A 209, 447–461 (1951)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Gray, J. & Hancock, G. J. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32, 802–814 (1955)

    Google Scholar 

  8. 8

    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)

    ADS  Article  Google Scholar 

  9. 9

    Becker, L. E., Koehler, S. A. & Stone, H. A. On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer. J. Fluid Mech. 490, 15–35 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10

    Najafi, A. & Golestanian, R. Simple swimmer at low Reynolds number: Three linked spheres. Phys. Rev. E. 69, 062901–062904 (2004)

    ADS  Article  Google Scholar 

  11. 11

    Cox, R. G. Motion of long slender bodies in a viscous fluid. Part I. General theory. J. Fluid Mech. 45, 791–810 (1971)

    Article  Google Scholar 

  12. 12

    Brennen, C. Locomotion of flagellates with mastigonemes. J. Mechanochem. Cell Motil. 3, 207–217 (1976)

    CAS  Google Scholar 

  13. 13

    Avron, J. E., Gat, O. & Kenneth, O. Optimal swimming at low Reynolds numbers. Phys. Rev. Lett. 93, 186001–186004 (2004)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lagomarsino, M. C., Capuani, F. & Lowe, C. P. A simulation study of the dynamics of a driven filament in an Aristotelian fluid. J. Theor. Biol. 224, 215–224 (2003)

    MathSciNet  CAS  Article  Google Scholar 

  15. 15

    Wiggins, C. H. & Goldstein, R. E. Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80, 3879–3882 (1998)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Lowe, C. P. Dynamics of filaments: modelling the dynamics of driven microfilaments. Phil. Trans. R. Soc. Lond. B 358, 1543–1550 (2003)

    Article  Google Scholar 

  17. 17

    Goubault, C. et al. Flexible magnetic filaments as micromechanical sensors. Phys. Rev. Lett. 91, 260802–260805 (2003)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Koenig, A. et al. Magnetic force probe for nanoscale biomolecules. Phys. Rev. Lett. (in the press)

  19. 19

    Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Zahn, K., Lenke, R. & Maret, G. Friction coefficient of rod-like chains of spheres at very-low Reynolds-numbers.1. Experiment. J. Phys. II 4, 555–560 (1994)

    CAS  Google Scholar 

  21. 21

    Meunier, A. Friction coefficient of rod-like chains of spheres at very-low Reynolds-numbers.2. Numerical simulations. J. Phys. II 4, 561–566 (1994)

    CAS  Google Scholar 

  22. 22

    Terray, A., Oakey, J. & Marr, D. W. M. Microfluidic control using colloidal devices. Science 296, 1841–1844 (2002)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Darnton, N., Turner, L., Breuer, K. & Berg, H. C. Moving fluid with bacterial carpets. Biophys. J. 86, 1863–1870 (2004)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Camalet, S., Julicher, F. & Prost, J. Self-organized beating and swimming of internally driven filaments. Phys. Rev. Lett. 82, 1590–1593 (1999)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Ishijima, S. & Hiramoto, Y. Flexural rigidity of echinoderm sperm flagella. Cell Struct. Funct. 19, 349–362 (1994)

    CAS  Article  Google Scholar 

  26. 26

    Wiggins, C. H., Riveline, D., Ott, A. & Goldstein, R. E. Trapping and wiggling: Elastohydrodynamics of driven microfilaments. Biophys. J. 74, 1043–1060 (1998)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank the Imphy Company for providing us with free Mumetal. We also thank A. Ajdari, J. Prost, J.-B. Salmon and D. Weitz for discussions, and C. Gosse, A. Koenig, F. Montel and C. Goubault for help in material preparation.

Author information



Corresponding author

Correspondence to Rémi Dreyfus.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This document describes the physics of the motion of the magnetic filament attached to a red blood cell. (DOC 84 kb)

Supplementary Video 1

This movie shows the dynamics of a filament tethered to a red blood cell on a single period of magnetic field (f=10Hz, Bx=9mT, By=14.5mT). The frame rate is 440 frames/s. One can clearly see how the filament bends to follow the direction of the magnetic field. (MOV 311 kb)

Supplementary Video 2

This movie shows the dynamics of the same filament on 25 periods of magnetic field (f=10Hz, Bx=9mT, B>y=14.5mT). The frame rate is 40 frames/s. The filament is moving towards the direction of the free extremity at a velocity corresponding to the red cell size per second. (MOV 770 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dreyfus, R., Baudry, J., Roper, M. et al. Microscopic artificial swimmers. Nature 437, 862–865 (2005). https://doi.org/10.1038/nature04090

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing