Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea


The disappearance of iron formations from the geological record 1.8 billion years (Gyr) ago was the consequence of rising oxygen levels in the atmosphere starting 2.45–2.32 Gyr ago1,2,3. It marks the end of a 2.5-Gyr period dominated by anoxic and iron-rich deep oceans. However, despite rising oxygen levels and a concomitant increase in marine sulphate concentration, related to enhanced sulphide oxidation during continental weathering4, the chemistry of the oceans in the following mid-Proterozoic interval (1.8–0.8 Gyr ago) probably did not yet resemble our oxygen-rich modern oceans. Recent data5,6,7,8 indicate that marine oxygen and sulphate concentrations may have remained well below current levels during this period, with one model indicating that anoxic and sulphidic marine basins were widespread, and perhaps even globally distributed4. Here we present hydrocarbon biomarkers (molecular fossils) from a 1.64-Gyr-old basin in northern Australia, revealing the ecological structure of mid-Proterozoic marine communities. The biomarkers signify a marine basin with anoxic, sulphidic, sulphate-poor and permanently stratified deep waters, hostile to eukaryotic algae. Phototrophic purple sulphur bacteria (Chromatiaceae) were detected in the geological record based on the new carotenoid biomarker okenane, and they seem to have co-existed with communities of green sulphur bacteria (Chlorobiaceae). Collectively, the biomarkers support mounting evidence for a long-lasting Proterozoic world in which oxygen levels remained well below modern levels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Biomarker distribution of the BCF.
Figure 2: Selected-ion-recording chromatograms of triaromatic steroids (TA; black and grey signals).
Figure 3


  1. 1

    Holland, H. D. in Treatise on Geochemistry Vol. 6 (The Oceans and Marine Geochemistry (ed. Elderfield, H.) 583–625 (Elsevier/Pergamon, Oxford, 2004)

    Google Scholar 

  2. 2

    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth's earliest sulfur cycle. Science 289, 756–758 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Shen, Y., Canfield, D. E. & Knoll, A. H. Middle Proterozoic ocean chemistry: evidence from the McArthur Basin, northern Australia. Am. J. Sci. 302, 81–109 (2002)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Shen, Y., Knoll, A. H. & Walter, M. R. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423, 632–635 (2003)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Kah, L. C., Lyons, T. W. & Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–838 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  8. 8

    Arnold, G. L., Anbar, A. D., Barling, J. & Lyons, T. W. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304, 87–90 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. 9

    Page, R. W. & Sweet, I. P. Geochronology of basin phases in the western Mt Isa Inlier, and correlation with the McArthur Basin. Aust. J. Earth Sci. 45, 219–232 (1998)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Bull, S. W. Sedimentology of the Palaeoproterozoic Barney Creek Formation in DDH BMR McArthur 2, southern McArthur Basin, Northern Territory. Aust. J. Earth Sci. 45, 21–31 (1998)

    ADS  Article  Google Scholar 

  11. 11

    Jackson, M. J., Southgate, P. N., Winefield, P. R., Barnett, K. & Zeilinger, I. Revised sub-devision and regional correlation of the McArthur Basin succession based on NABRE's 1995–8 sequence stratigraphic studies (Australian Geological Survey Organization, record 2000/03, Canberra, 2000).

  12. 12

    Veizer, J., Plumb, K. A., Clayton, R. N., Hinton, R. W. & Grotzinger, J. P. Geochemistry of Precambrian carbonates: V. Late Paleoproterozoic seawater. Geochim. Cosmochim. Acta 56, 2487–2501 (1992)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Crick, I. H., Boreham, C. J., Cook, A. C. & Powell, T. G. Petroleum geology and geochemistry of Middle Proterozoic McArthur Basin, northern Australia. II: Assessment of source rock potential. AAPG Bull 72, 1495–1514 (1988)

    CAS  Google Scholar 

  14. 14

    Summons, R. E., Powell, T. G. & Boreham, C. J. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia: III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta 52, 1747–1763 (1988)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Summons, R. E. & Jahnke, L. L. in Biological Markers in Sediments and Petroleum (eds Moldowan, J. M., Albrecht, P. & Philp, R. P.) 182–200 (Prentice Hall, Englewood Cliffs, New Jersey, 1992)

    Google Scholar 

  16. 16

    Collister, J. W., Summons, R. E., Lichtfouse, E. & Hayes, J. M. An isotopic biogeochemical study of the Green River oil shale. Org. Geochem. 19, 265–276 (1992)

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta 62, 1745–1756 (1998)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Scholten, J. C. M. et al. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment. FEMS Microbiol. Ecol. 42, 375–385 (2002)

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Hayes, J. M., Lambert, I. B. & Strauss, H. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 129–134 (Cambridge Univ. Press, New York, 1992)

    Google Scholar 

  20. 20

    Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Palmisano, A. C., Cronin, S. E. & Des Marais, D. J. Analysis of lipophilic pigments from a phototrophic microbial mat community by high performance liquid chromatography. J. Microbiol. Methods 8, 209–217 (1988)

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Volkman, J. K. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60, 496–506 (2003)

    Article  Google Scholar 

  23. 23

    Bird, C. W. et al. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature 230, 473–474 (1971)

    ADS  CAS  Article  PubMed  Google Scholar 

  24. 24

    Brocks, J. J. & Summons, R. E. in Treatise on Geochemistry Vol. 8 (Biogeochemistry) (ed. Schlesinger, W. H.) 63–115 (Elsevier, Oxford, 2004)

    Google Scholar 

  25. 25

    Van Gemerden, H. & Mas, J. in Anoxygenic Photosynthetic Bacteria (eds Blankenship, R. E., Madigan, M. T. & Bauer, C. E.) 49–85 (Kluwer Academic, Dordrecht, 1995)

    Google Scholar 

  26. 26

    Repeta, D. J., Simpson, D. J., Jørgensen, B. B. & Jannasch, H. W. Evidence for the existence of anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 342, 69–72 (1989)

    ADS  CAS  Article  PubMed  Google Scholar 

  27. 27

    Kara, A. B., Rochford, P. A. & Hurlburt, H. E. Mixed layer depth variability over the global ocean. J. Geophys. Res. 108(C3), 3079 (2003) (doi:10.1029/2000JC000736)

    ADS  Article  Google Scholar 

  28. 28

    van Kaam-Peters, H. M. E. & Sinninghe Damsté, J. S. Characterization of an extremely organic sulphur-rich, 150 Ma old carbonaceous rock: palaeoenvironmental implications. Org. Geochem. 27, 371–397 (1997)

    CAS  Article  Google Scholar 

  29. 29

    Schaeffer, P., Adam, P., Wehrung, P. & Albrecht, P. Novel aromatic carotenoid derivatives from sulfur photosynthetic bacteria in sediments. Tetrahedr. Lett. 38, 8413–8416 (1997)

    CAS  Article  Google Scholar 

  30. 30

    Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

Download references


We thank J. Hope, C. Sandison and P. Greenwood for technical support; A. Bradley and R. Haese for scientific expertise on methanogens; Geoscience Australia (GA) and the Northern Territory Geological Survey for samples; D. Rawlings for expert advice on the geology of the McArthur Group; and P. Schaeffer for supplying synthetic standards of aromatic carotenoids. This work was supported by the William F. Milton Fund of Harvard University and GA. Work conducted at Massachusetts Institute of Technology was supported by a NASA Exobiology grant to R.E.S. G.D.L. and S.A.B. were at the University of Newcastle upon Tyne during parts of the preparation of this work and thank the Natural Environment Research Council for funding a postdoctoral fellowship and PhD studentship, respectively. J.J.B. acknowledges the Harvard Society of Fellows and the Department of Organismic & Evolutionary Biology, Harvard University, for financial support during the preparation of this work.

Author information



Corresponding author

Correspondence to Jochen J. Brocks.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

Supplementary Methods (information about sample preparation and analysis), Supplementary Discussion (a short review of biological origins of aromatic carotenoids), Supplementary Table S1 (Presence of arylisoprenoids in samples from the Barney Creek Formation), and the chemical structures of relevant biomarkers. (DOC 268 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brocks, J., Love, G., Summons, R. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing