Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A dark jet dominates the power output of the stellar black hole Cygnus X-1

Abstract

Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter1. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities2. Here we show that the 10-solar-mass (10M) black hole in the X-ray binary Cygnus X-1 (refs 3–5) is surrounded by a large-scale (5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet6. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of ‘dark’, radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A jet-blown ring around the Galactic stellar black hole in Cygnus X-1.
Figure 2: The ring of Cygnus X-1: sketch of the model.
Figure 3: Optical counterpart of the radio ring of Cygnus X-1.

References

  1. 1

    Frank, J., King, A. R. & Raine, D. J. Accretion Power in Astrophysics (Cambridge Univ. Press, Cambridge, 2002)

    Book  Google Scholar 

  2. 2

    Hughes, P. A. Beams and Jets in Astrophysics (Cambridge Astrophysics Series, Cambridge Univ. Press, Cambridge, 1991)

    Book  Google Scholar 

  3. 3

    Bowyer, S., Byram, E. T., Chubb, T. A. & Friedman, H. Cosmic X-ray sources. Science 147, 394–398 (1965)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Gies, D. R. & Bolton, C. T. The optical spectrum of HDE 226868 = Cygnus X-1. II—Spectrophotometry and mass estimates. Astrophys. J. 304, 371–393 (1986)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Herrero, A., Kudritzki, R. P., Gabler, R., Vilchez, J. M. & Gabler, A. Fundamental parameters of galactic luminous OB stars. II. A spectroscopic analysis of HDE 226868 and the mass of Cygnus X-1. Astron. Astrophys. 297, 556–566 (1995)

    ADS  CAS  Google Scholar 

  6. 6

    Stirling, A. M. et al. A relativistic jet from Cygnus X-1 in the low/hard X-ray state. Mon. Not. R. Astron. Soc. 327, 1273–1278 (2001)

    ADS  Article  Google Scholar 

  7. 7

    Urry, C. M. & Radovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pacif. 107, 803–845 (1995)

    ADS  Article  Google Scholar 

  8. 8

    Blandford, R. D. Black holes and relativistic jets. Prog. Theor. Phys. Suppl. 143, 182–201 (2001)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Mirabel, I. F. & Rodríguez, L. F. A superluminal source in the galaxy. Nature 371, 46–48 (1994)

    ADS  Article  Google Scholar 

  10. 10

    Mirabel, I. F. & Rodríguez, L. F. Sources of relativistic jets in the galaxy. Annu. Rev. Astron. Astrophys. 37, 409–443 (1999)

    ADS  Article  Google Scholar 

  11. 11

    Fender, R. P. Jets from X-ray binaries. in Compact Stellar X-Ray Sources (eds Lewin, W. H. G. & van der Klis, M.) (Cambridge Univ. Press, Cambridge, in the press)

  12. 12

    Martí, J., Rodríguez, L. F., Mirabel, I. F. & Paredes, J. M. A search for arcminute-scale radio jets in Cygnus X-1. Astron. Astrophys. 306, 449–454 (1996)

    ADS  Google Scholar 

  13. 13

    Sharpless, S. A Catalogue of HII regions. Astrophys. J. Suppl. Ser. 4, 257–279 (1959)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Hunter, D. A. & Massey, P. Small galactic H II regions. I—Spectral classifications of massive stars. Astron. J. 99, 846–856 (1990)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Lestrade, J.-F. et al. High-precision VLBI astrometry of radio-emitting stars. Astron. Astrophys. 344, 1014–1026 (1999)

    ADS  Google Scholar 

  16. 16

    Mirabel, I. F. & Rodrigues, I. Formation of a black hole in the dark. Science 300, 1119–1120 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Smith, D. A., Wilson, A. S., Arnaud, K. A., Terashima, Y. & Young, A. J. A Chandra X-Ray study of Cygnus A. III. The cluster of galaxies. Astrophys. J. 565, 195–207 (2002)

    ADS  Article  Google Scholar 

  18. 18

    Burbidge, G. R. Estimates of the total energy in particles and magnetic field in the non-thermal radio sources. Astrophys. J. 129, 849–851 (1959)

    ADS  Article  Google Scholar 

  19. 19

    Castor, J., McCray, R. & Weaver, R. Interstellar bubbles. Astrophys. J. 200, L107–L110 (1975)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Kaiser, C. R. & Alexander, P. A self-similar model for extragalactic radio sources. Mon. Not. R. Astron. Soc. 286, 215–222 (1997)

    ADS  Article  Google Scholar 

  21. 21

    Heinz, S., Reynolds, C. S. & Begelman, M. C. X-ray signatures of evolving radio galaxies. Astrophys. J. 501, 126–136 (1998)

    ADS  Article  Google Scholar 

  22. 22

    Longair, M. S. High Energy Astrophysics (Cambridge Univ. Press, Cambridge, 1992)

    Google Scholar 

  23. 23

    Lotz, W. Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions. Astrophys. J. Suppl. Ser. 14, 207–238 (1967)

    ADS  CAS  Article  Google Scholar 

  24. 24

    McClintock, J. E. & Remillard, R. A. Black hole binaries. in Compact Stellar X-Ray Sources (eds Lewin, W. H. G. & van der Klis, M.) (Cambridge Univ. Press, Cambridge, in the press)

  25. 25

    Fender, R. P., Pooley, G. G., Durouchoux, P., Tilanus, R. P. J. & Brocksopp, C. The very flat radio-millimetre spectrum of Cygnus X-1. Mon. Not. R. Astron. Soc. 312, 853–858 (2000)

    ADS  Article  Google Scholar 

  26. 26

    Di Salvo, T., Done, C., Zycki, P. T., Burderi, L. & Robba, N. R. Probing the inner region of Cygnus X-1 in the low/hard state through its X-ray broadband spectrum. Astrophys. J. 547, 1024–1033 (2001)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Gallo, E., Fender, R. P. & Pooley, G. G. A universal radio/X-ray correlation in low/hard state black hole binaries. Mon. Not. R. Astron. Soc. 34, 60–72 (2003)

    ADS  Article  Google Scholar 

  28. 28

    Livio, M., Pringle, J. E. & King, A. R. The disk-jet connection in microquasars and AGN. Astrophys. J. 593, 184–188 (2003)

    ADS  Article  Google Scholar 

  29. 29

    Malzac, J., Merloni, A. & Fabian, A. C. Jet-disc coupling through a common energy reservoir in the black hole XTE J1118 + 480. Mon. Not. R. Astron. Soc. 351, 253–264 (2004)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Fender, R. P., Gallo, E. & Jonker, P. G. Jet-dominated states: an alternative to advection across black hole event horizons in ‘quiescent’ X-ray binaries. Mon. Not. R. Astron. Soc. 343, L99–L103 (2003)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Mislis and R. Corradi for the Hα observation presented in this work. The Westerbork Synthesis Radio Telescope is operated by ASTRON (the Netherlands Foundation for Research in Astronomy) with support from the Netherlands Foundation for Scientific Research (NWO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elena Gallo.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gallo, E., Fender, R., Kaiser, C. et al. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature 436, 819–821 (2005). https://doi.org/10.1038/nature03879

Download citation

Further reading

  • The content of astrophysical jets

    • Gustavo E. Romero

    Astronomische Nachrichten (2021)

  • Measuring fundamental jet properties with multiwavelength fast timing of the black hole X-ray binary MAXI J1820+070

    • A J Tetarenko
    • , P Casella
    • , J C A Miller-Jones
    • , G R Sivakoff
    • , J A Paice
    • , F M Vincentelli
    • , T J Maccarone
    • , P Gandhi
    • , V S Dhillon
    • , T R Marsh
    • , T D Russell
    •  & P Uttley

    Monthly Notices of the Royal Astronomical Society (2021)

  • A search for signatures of interactions of X-ray binary outflows with their environments with ALMA

    • M. Díaz Trigo
    • , D. Petry
    • , E. Humphreys
    • , C. M. V. Impellizzeri
    •  & H. B. Liu

    Astronomy & Astrophysics (2021)

  • Disc–jet coupling changes as a possible indicator for outbursts from GX 339−4 remaining within the X-ray hard state

    • S E M de Haas
    • , T D Russell
    • , N Degenaar
    • , S Markoff
    • , A J Tetarenko
    • , B E Tetarenko
    • , J van den Eijnden
    • , J C A Miller-Jones
    • , A S Parikh
    • , R M Plotkin
    •  & G R Sivakoff

    Monthly Notices of the Royal Astronomical Society (2021)

  • HAWC Search for High-mass Microquasars

    • A. Albert
    • , R. Alfaro
    • , C. Alvarez
    • , J. R. Angeles Camacho
    • , J. C. Arteaga-Velázquez
    • , K. P. Arunbabu
    • , D. Avila Rojas
    • , H. A. Ayala Solares
    • , V. Baghmanyan
    • , E. Belmont-Moreno
    • , S. Y. BenZvi
    • , C. Brisbois
    • , K. S. Caballero-Mora
    • , T. Capistrán
    • , A. Carramiñana
    • , S. Casanova
    • , U. Cotti
    • , J. Cotzomi
    • , E. De la Fuente
    • , C. de León
    • , R. Diaz Hernandez
    • , J. C. Díaz-Vélez
    • , B. L. Dingus
    • , M. Durocher
    • , M. A. DuVernois
    • , R. W. Ellsworth
    • , C. Espinoza
    • , K. L. Fan
    • , K. Fang
    • , N. Fraija
    • , A. Galván-Gámez
    • , J. A. García-González
    • , F. Garfias
    • , M. M. González
    • , J. A. Goodman
    • , J. P. Harding
    • , S. Hernandez
    • , B. Hona
    • , D. Huang
    • , F. Hueyotl-Zahuantitla
    • , P. Hüntemeyer
    • , A. Iriarte
    • , A. Jardin-Blicq
    • , V. Joshi
    • , D. Kieda
    • , A. Lara
    • , J. Lee
    • , W. H. Lee
    • , H. León Vargas
    • , J. T. Linnemann
    • , A. L. Longinotti
    • , G. Luis-Raya
    • , J. Lundeen
    • , K. Malone
    • , O. Martinez
    • , J. Martínez-Castro
    • , J. A. Matthews
    • , P. Miranda-Romagnoli
    • , J. A. Morales-Soto
    • , E. Moreno
    • , M. Mostafá
    • , A. Nayerhoda
    • , L. Nellen
    • , M. Newbold
    • , M. U. Nisa
    • , R. Noriega-Papaqui
    • , L. Olivera-Nieto
    • , N. Omodei
    • , A. Peisker
    • , Y. Pérez Araujo
    • , C. D. Rho
    • , Y. J. Roh
    • , D. Rosa-González
    • , F. Salesa Greus
    • , A. Sandoval
    • , M. Schneider
    • , J. Serna-Franco
    • , A. J. Smith
    • , R. W. Springer
    • , K. Tollefson
    • , I. Torres
    • , R. Torres-Escobedo
    • , R. Turner
    • , F. Ureña-Mena
    • , L. Villaseñor
    • , I. J. Watson
    • , T. Weisgarber
    • , E. Willox
    •  & H. Zhou

    The Astrophysical Journal Letters (2021)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing