Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An extrasolar giant planet in a close triple-star system

Abstract

Hot Jupiters are gas-giant planets orbiting with periods of 3–9 days around Sun-like stars. They are believed to form in a disk of gas and condensed matter at or beyond 2.7 astronomical units (au—the Sun–Earth distance) from their parent star1,2. At such distances, there exists a sufficient amount of solid material to produce a core capable of capturing enough gas to form a giant planet. Subsequently, they migrate inward to their present close orbits3. Here I report the detection of an unusual hot Jupiter orbiting the primary star of a triple stellar system, HD 188753. The planet has an orbital period of 3.35 days and a minimum mass of 1.14 times that of Jupiter. The primary star's mass is 1.06 times that of the Sun, 1.06 M. The secondary star, itself a binary stellar system, orbits the primary at an average distance of 12.3 au with an eccentricity of 0.50. The mass of the secondary pair is 1.63 M. Such a close and massive secondary would have truncated a disk around the primary to a radius of only 1.3 au (ref. 4) and might have heated it up to temperatures high enough to prohibit giant-planet formation5,6, leaving the origin of this planet unclear.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Adaptive optics image of HD 188753.
Figure 2: Radial velocities as functions of orbital phase.
Figure 3: Spectroscopy and photometry of HD 188753.

References

  1. Sasselov, D. D. & Lecar, M. On the snow line in dusty protoplanetary disks. Astrophys. J. 528, 995–998 (2000)

    ADS  Article  Google Scholar 

  2. Kornet, K., Różyczka, M. & Stepinski, T. F. An alternative look at the snowline in protoplanetary disks. Astron. Astrophys. 417, 151–158 (2004)

    ADS  Article  Google Scholar 

  3. Trilling, D. E. et al. Orbital evolution and migration of giant planets: Modeling extrasolar planets. Astrophys. J. 500, 428–439 (1998)

    ADS  Article  Google Scholar 

  4. Pichardo, B., Sparke, L. S. & Aguilar, L. A. Circumstellar and circumbinary disks in eccentric stellar binaries. Mon. Not. R. Astron. Soc. 359, 521–530 (2005)

    ADS  Article  Google Scholar 

  5. Kley, W. The Formation of Binary Stars (eds Zinnecker, H. & Mathieu, R. D.) 511–518 (IAU Symposium, Astronomical Society of the Pacific, Potsdam, 2001).

  6. Nelson, A. F. Planet formation is unlikely in equal-mass binary systems with A 50 AU. Astrophys. J. 537, L65–L68 (2000)

    ADS  CAS  Article  Google Scholar 

  7. Zucker, S. & Mazeh, T. On the mass-period correlation of the extrasolar planets. Astrophys. J. 568, L113–L116 (2002)

    ADS  CAS  Article  Google Scholar 

  8. Eggenberger, A., Udry, S. & Mayor, M. Statistical properties of exoplanets. III. Planet properties and stellar multiplicity. Astron. Astrophys. 417, 353–360 (2004)

    ADS  Article  Google Scholar 

  9. Schneider, J. The extrasolar planet encyclopaedia. http://www.obspm.fr/encycl/encycl.html (2005).

  10. Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995)

    ADS  CAS  Article  Google Scholar 

  11. Marcy, G. W. & Butler, R. P. Precision radial velocities with an iodine absorption cell. Publ. Astron. Soc. Pacif. 104, 270–277 (1992)

    ADS  Article  Google Scholar 

  12. Dvorak, R. Numerical experiments on planetary orbits in double stars. Celest. Mech. 34, 369–378 (1984)

    ADS  Article  Google Scholar 

  13. Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999)

    ADS  Article  Google Scholar 

  14. Duquennoy, A. & Mayor, M. Multiplicity among solar-type stars in the solar neighbourhood. II - Distribution of the orbital elements in an unbiased sample. Astron. Astrophys. 248, 485–524 (1991)

    ADS  Google Scholar 

  15. Simon, M. et al. A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions. Astrophys. J. 443, 625–637 (1995)

    ADS  Article  Google Scholar 

  16. Konacki, M. Precision radial velocities of double-lined spectroscopic binaries with an iodine absorption cell. Astrophys. J. 626, 431–438 (2005)

    ADS  CAS  Article  Google Scholar 

  17. Vogt, S. S., et al. in Proc. SPIE Instrumentation in Astronomy VIII (eds Crawford, D. L. & Craine, E. R.) 362–375 (SPIE, Bellingham, Washington, 1994)

    Book  Google Scholar 

  18. Hough, G. W. Catalogue of 132 new double stars and measures of 255 double stars. Astron. Nachr. 149, 65–72 (1899)

    ADS  Article  Google Scholar 

  19. Griffin, R. F. The multiple star HD 188753 (ADS 13125). Observatory 97, 15–18 (1977)

    ADS  Google Scholar 

  20. Perryman, M. A. C. et al. The HIPPARCOS catalogue. Astron. Astrophys. 323, L49–L52 (1997)

    ADS  Google Scholar 

  21. Cutri, R. M. et al. 2MASS all-sky catalog of point sources (Cutri + 2003). VizieR Online Data Catalog 2246 (June 2003) http://vizier.u-strasbg.fr/viz-bin/Cat?II/246.

  22. Söderhjelm, S. Visual binary orbits and masses post HIPPARCOS. Astron. Astrophys. 341, 121–140 (1999)

    ADS  Google Scholar 

  23. Zucker, S., Mazeh, T., Santos, N. C., Udry, S. & Mayor, M. Multi-order TODCOR: Application to observations taken with the CORALIE echelle spectrograph. II. A planet in the system HD 41004. Astron. Astrophys. 426, 695–698 (2004)

    ADS  CAS  Article  Google Scholar 

  24. Els, S. G. et al. A second substellar companion in the Gliese 86 system. A brown dwarf in an extrasolar planetary system. Astron. Astrophys. 370, L1–L4 (2001)

    ADS  Article  Google Scholar 

  25. Hatzes, A. P. et al. A planetary companion to γ Cephei A. Astrophys. J. 599, 1383–1394 (2003)

    ADS  CAS  Article  Google Scholar 

  26. Artymowicz, P. & Lubow, S. H. Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes. Astrophys. J. 421, 651–667 (1994)

    ADS  Article  Google Scholar 

  27. Wuchter, G. Formation of giant planets close to stars. Bull. Am. Astron. Soc. 28, 1108 (1996)

    ADS  Google Scholar 

  28. Boss, A. P. Formation of gas and ice giant planets. Earth Planet. Sci. Lett. 202, 513–523 (2002)

    ADS  CAS  Article  Google Scholar 

  29. Konacki, M., Torres, G., Sasselov, D. D. & Jha, S. High-resolution spectroscopic follow-up of OGLE planetary transit candidates in the Galactic bulge: Two possible Jupiter-mass planets and two blends. Astrophys. J. 597, 1076–1091 (2003)

    ADS  CAS  Article  Google Scholar 

  30. Girardi, L., Bressan, A., Bertelli, G. & Chiosi, C. Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 Msun, and from Z = 0.0004 to 0.03. Astron. Astrophys. Suppl. Ser. 141, 371–383 (2000)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

M.K. thanks S. Kulkarni for support and guidance, D. Sasselov for discussions, and C. Gelino for acquiring the NIRC2 data. The data presented here were obtained at the W. M. Keck Observatory (operated by the California Institute of Technology, University of California, and NASA), which was made possible by financial support from the W. M. Keck Foundation. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. M.K. acknowledges support from NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Konacki.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The author declares no competing financial interests.

Supplementary information

Supplementary Methods

The file contains a detailed description of the novel method for precision radial velocity measurements with an iodine gas absorption cell of double-lined spectroscopic binary stars. (PDF 91 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konacki, M. An extrasolar giant planet in a close triple-star system. Nature 436, 230–233 (2005). https://doi.org/10.1038/nature03856

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03856

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing