Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Seismic resurfacing by a single impact on the asteroid 433 Eros

Abstract

Impact cratering creates a wide range of topography on small satellites and asteroids. The population of visible craters evolves with impacts, and because there are no competing endogenic processes to modify the surface, determining the various ways younger craters add to or subtract from the population is a fundamental aspect of small-body geology1,2. Asteroid 433 Eros, the most closely studied small body, has regions of substantially different crater densities3,4,5 that remain unexplained. Here we show that the formation of a relatively young crater (7.6 km in diameter) resulted in the removal of other craters as large as 0.5 km over nearly 40 per cent of the asteroid. Burial by ejecta cannot explain the observed pattern of crater removal. The limitation of reduced crater density to a zone within a particular straight-line distance through the asteroid from the centre of the large crater suggests degradation of the topography by seismic energy6 released during the impact. Our observations indicate that the interior of Eros is sufficiently cohesive to transmit seismic energy over many kilometres, and the outer several tens of metres of the asteroid must be composed of relatively non-cohesive material.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Crater densities and other surface characteristics of Eros.
Figure 2: Transition between regions of different crater density.
Figure 3: Summary statistics of crater densities.

References

  1. Chapman, C. R. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R.) 315–330 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  2. Sullivan, R., Thomas, P. C., Murchie, S. L. & Robinson, M. S. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R.) 331–350 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  3. Bethoud, M., Thomas, P. & Veverka, J. Eros: Crater densities in three major impact features. Bull Am. Astron. Soc. 33, 1149 (2001)

    ADS  Google Scholar 

  4. Berthoud, M., Veverka, J. & Thomas, P. C. Crater distribution and erasure on asteroid 433 Eros. Icarus (submitted)

  5. Robinson, M. S., Thomas, P. C., Veverka, J., Murchie, S. L. & Wilcox, B. B. The geology of Eros. Meteorit. Planet. Sci. 37, 1651–1684 (2002)

    ADS  CAS  Article  Google Scholar 

  6. Greenberg, R., Nolan, M. C., Bottke, W. F. & Kolvoord, R. Collisional history of Gaspra. Icarus 107, 84–97 (1994)

    ADS  Article  Google Scholar 

  7. Dobrovolskis, A. R. & Burns, J. A. Life near the Roche limit: Behavior of ejecta from satellites close to planets. Icarus 42, 422–441 (1980)

    ADS  Article  Google Scholar 

  8. Thomas, P. C. Ejecta emplacement on the martian satellites. Icarus 131, 78–106 (1998)

    ADS  Article  Google Scholar 

  9. Korycansky, D. G. & Asphaug, E. Simulations of impact ejecta and regolith accumulation on asteroid Eros. Icarus 171, 110–119 (2004)

    ADS  Article  Google Scholar 

  10. Geissler, P. et al. Erosion and ejecta reaccretion on 243 Ida and its moon. Icarus 120, 140–157 (1996)

    ADS  Article  Google Scholar 

  11. Greenberg, R. et al. Collisional and dynamical history of Ida. Icarus 120, 106–118 (1996)

    ADS  Article  Google Scholar 

  12. Richardson, J. E., Melosh, H. J. & Greenberg, R. Impact-induced seismic activity on asteroid 433 Eros: A surface modification process. Science 306, 1526–1529 (2004)

    ADS  CAS  Article  Google Scholar 

  13. Asphaug, E. et al. Mechanical and geological effects of impact cratering on Ida. Icarus 120, 158–184 (1996)

    ADS  Article  Google Scholar 

  14. Chapman, C. R. et al. Impact history of Eros: Craters and boulder. Icarus 155, 104–118 (2002)

    ADS  Article  Google Scholar 

  15. Arvidson, R. E. et al. Crater Analysis Techniques Working Group Standard techniques for presentation and analysis of crater size frequency data. Icarus 37, 467–474 (1979)

    ADS  Article  Google Scholar 

  16. Thomas, P. C. et al. Shoemaker crater as the source of most ejecta blocks on the asteroid 433 Eros. Nature 413, 394–396 (2001)

    ADS  CAS  Article  Google Scholar 

  17. Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, New York, 1989)

    Google Scholar 

  18. Asphaug, E. & Melosh, H. J. The Stickney impact of Phobos: A dynamical model. Icarus 101, 144–164 (1993)

    ADS  Article  Google Scholar 

  19. Nolan, M. C., Asphaug, E., Melosh, H. J. & Greenberg, R. Impact craters on asteroids: Does gravity or strength control their size? Icarus 124, 359–371 (1996)

    ADS  Article  Google Scholar 

  20. Thomas, P. C. et al. Eros: shape, topography and slope processes. Icarus 155, 18–37 (2002)

    ADS  Article  Google Scholar 

  21. Houston, W. N., Moriwaki, Y. & Chang, C. S. Downslope movement of lunar soil and rock caused by meteoroid impact. Proc. Lunar Sci. Conf. 4, 2425–2435 (1973)

    ADS  Google Scholar 

  22. Cheng, A. F., Izenberg, N., Chapman, C. R. & Zuber, M. T. Ponded deposits on asteroid 433 Eros. Meteorit. Planet. Sci. 37, 1095–1105 (2002)

    ADS  CAS  Article  Google Scholar 

  23. Nolan, M. C., Asphaug, E., Greenberg, R. & Melosh, H. J. Impacts on asteroids: fragmentation, regolith transport, and disruption. Icarus 152, 1–15 (2001)

    ADS  Article  Google Scholar 

  24. Housen, K. R., Holsapple, K. A. & Voss, M. E. Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature 402, 155–157 (1999)

    ADS  CAS  Article  Google Scholar 

  25. Davis, D. R. The collisional history of asteroid 253 Mathilde. Icarus 140, 49–52 (1999)

    ADS  Article  Google Scholar 

  26. Barnouin-Jha, O. et al. Preliminary impact crater dimensions on 433 Eros from the NEAR laser rangefinder and imager. Lunar Planet. Sci. 32, 1786 [CD-ROM] (Lunar and Planetary Institute, Houston, Texas, 2001)

    ADS  Google Scholar 

  27. Procker, L. M. et al. Surface expressions of structural features on Eros. Icarus 155, 75–93 (2002)

    ADS  Article  Google Scholar 

  28. Thomas, P. C., Prockter, L., Robinson, M., Joseph, J. & Veverka, J. Global structure of asteroid 433 Eros. Geophys. Res. Lett. 29, doi:10.1029/2001GL014599 (2002)

  29. Veverka, J. et al. Imaging of small-scale features on 433 Eros from NEAR: Evidence for a complex regolith. Science 292, 484–488 (2001)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NASA Discovery Data Analysis Program. We are grateful to B. Carcich, to K. Consroe for technical help, and to M. Berthoud and J. Veverka for discussions. We also thank E. Asphaug and R. Greenberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Thomas.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomas, P., Robinson, M. Seismic resurfacing by a single impact on the asteroid 433 Eros. Nature 436, 366–369 (2005). https://doi.org/10.1038/nature03855

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03855

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing