Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex


A substantial decrease in the number of synapses occurs in the mammalian brain from the late postnatal period until the end of life1,2,3,4,5. Although experience plays an important role in modifying synaptic connectivity6,7,8,9,10,11,12,13,14,15,16,17, its effect on this nearly lifelong synapse loss remains unknown. Here we used transcranial two-photon microscopy to visualize postsynaptic dendritic spines in layer I of the barrel cortex in transgenic mice expressing yellow fluorescent protein. We show that in young adolescent mice, long-term sensory deprivation through whisker trimming prevents net spine loss by preferentially reducing the rate of ongoing spine elimination, not by increasing the rate of spine formation. This effect of deprivation diminishes as animals mature but still persists in adulthood. Restoring sensory experience after adolescent deprivation accelerates spine elimination. Similar to sensory manipulation, the rate of spine elimination decreases after chronic blockade of NMDA (N-methyl-d-aspartate) receptors with the antagonist MK801, and accelerates after drug withdrawal. These studies of spine dynamics in the primary somatosensory cortex suggest that experience plays an important role in the net loss of synapses over most of an animal's lifespan, particularly during adolescence.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Long-term whisker trimming reduces spine elimination in barrel cortex of young adolescent mice at one month of age.
Figure 2: The effect of long-term deprivation on spine elimination decreases but still exists in adulthood.
Figure 3: Restoring sensory experience after previous deprivation accelerates spine elimination in adolescence but not in adulthood.
Figure 4: Spine elimination involves NMDA receptor activation.


  1. 1

    Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N. & Goldman-Rakic, P. S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Markus, E. J. & Petit, T. L. Neocortical synaptogenesis, aging, and behaviour: lifespan development in the motor-sensory system of the rat. Exp. Neurol. 96, 262–278 (1987)

    CAS  Article  Google Scholar 

  3. 3

    Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997)

    CAS  Article  Google Scholar 

  4. 4

    Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Zuo, Y., Chang, P., Lin, A. & Gan, W. B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005)

    CAS  Article  Google Scholar 

  6. 6

    Shatz, C. J. & Stryker, M. P. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. (Lond.) 281, 267–283 (1978)

    CAS  Article  Google Scholar 

  7. 7

    Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001)

    CAS  Article  Google Scholar 

  9. 9

    Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993)

    CAS  Article  Google Scholar 

  10. 10

    Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998)

    CAS  Article  Google Scholar 

  11. 11

    Lichtman, J. W. & Colman, H. Synapse elimination and indelible memory. Neuron 25, 269–278 (2000)

    CAS  Article  Google Scholar 

  12. 12

    Valverde, F. Rate and extent of recovery from dark rearing in the visual cortex of the mouse. Brain Res. 33, 1–11 (1971)

    CAS  Article  Google Scholar 

  13. 13

    Balice-Gordon, R. J. & Lichtman, J. W. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372, 519–524 (1994)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Winkelmann, E., Brauer, K. & Klutz, K. Spine density of lamina V pyramidal cells in the visual cortex of laboratory rats after lengthy dark exposure [in German with English abstract]. J. Hirnforsch. 18, 21–28 (1977)

    CAS  PubMed  Google Scholar 

  15. 15

    Micheva, K. D. & Beaulieu, C. An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex. Proc. Natl Acad. Sci. USA 92, 11834–11838 (1995)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. M. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Grossman, A. W., Churchill, J. D., Bates, K. E., Kleim, J. A. & Greenough, W. T. A brain adaptation view of plasticity: is synaptic plasticity an overly limited concept? Prog. Brain Res. 138, 91–108 (2002)

    Article  Google Scholar 

  18. 18

    Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nature Rev. Neurosci. 5, 24–34 (2004)

    CAS  Article  Google Scholar 

  19. 19

    Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996)

    CAS  Article  Google Scholar 

  21. 21

    Bock, J. & Braun, K. Blockade of N-methyl-d-aspartate receptor activation suppresses learning-induced synaptic elimination. Proc. Natl Acad. Sci. USA 96, 2485–2490 (1999)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Nicoll, R. A. & Malenka, R. C. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann. NY Acad. Sci. 868, 515–525 (1999)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Sawtell, N. B. et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38, 977–985 (2003)

    CAS  Article  Google Scholar 

  24. 24

    Sin, W. C., Haas, K., Ruthazer, E. S. & Cline, H. T. Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419, 475–480 (2002)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004)

    CAS  Article  Google Scholar 

  26. 26

    Sadaka, Y., Weinfeld, E., Lev, D. L. & White, E. L. Changes in mouse barrel synapses consequent to sensory deprivation from birth. J. Comp. Neurol. 457, 75–86 (2003)

    Article  Google Scholar 

  27. 27

    Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Knott, G. W., Quairiaux, C., Genoud, C. & Welker, E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34, 265–273 (2002)

    CAS  Article  Google Scholar 

  29. 29

    Changeux, J. P. & Danchin, A. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705–712 (1976)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999)

    CAS  Article  Google Scholar 

Download references


We thank N. Kasthuri, W. Thompson and K. Helmin for critical comments on this manuscript. This work was supported by grants from the National Institutes of Health to W.-B.G.

Author information



Corresponding author

Correspondence to Wen-Biao Gan.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Data

The effect of chessboard deprivation on spine dynamics in young adolescent and adult barrel cortex. (DOC 66 kb)

Supplementary Table S1

The percentage of spines eliminated and formed over various intervals under different experimental conditions. (DOC 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zuo, Y., Yang, G., Kwon, E. et al. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing