Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH

Abstract

The control by Na+/H+ antiporters of sodium/proton concentration and cell volume is crucial for the viability of all cells. Adaptation to high salinity and/or extreme pH in plants and bacteria or in human heart muscles requires the action of Na+/H+ antiporters. Their activity is tightly controlled by pH. Here we present the crystal structure of pH-downregulated NhaA, the main antiporter of Escherichia coli and many enterobacteria. A negatively charged ion funnel opens to the cytoplasm and ends in the middle of the membrane at the putative ion-binding site. There, a unique assembly of two pairs of short helices connected by crossed, extended chains creates a balanced electrostatic environment. We propose that the binding of charged substrates causes an electric imbalance, inducing movements, that permit a rapid alternating-access mechanism. This ion-exchange machinery is regulated by a conformational change elicited by a pH signal perceived at the entry to the cytoplasmic funnel.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental electron density.
Figure 2: Overall architecture of NhaA.
Figure 3: Substrate passage and periplasmic barrier.
Figure 4: Structural basis of Na + /H + translocation and pH regulation.
Figure 5: Proposed mechanism of pH regulation and translocation of NhaA.

References

  1. 1

    West, I. & Mitchell, P. Proton/sodium ion antiport in Escherichia coli. Biochem. J. 144, 87–90 (1974)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Padan, E., Venturi, M., Gerchman, Y. & Dover, N. Na+/H+ antiporters. Biochim. Biophys. Acta 1505, 144–157 (2001)

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Orlowski, J. & Grinstein, S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch. 447, 549–565 (2004)

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Counillon, L. & Pouysségur, J. The expanding family of eucaryotic Na+/H+ exchangers. J. Biol. Chem. 275, 1–4 (2000)

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Engelhardt, S., Hein, L., Keller, U., Klambt, K. & Lohse, M. J. Inhibition of Na+-H+ exchange prevents hypertrophy, fibrosis, and heart failure in β1-adrenergic receptor transgenic mice. Circ. Res. 90, 814–819 (2002)

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Myers, M. L. in The Sodium–Hydrogen Exchange, from Molecule to its Role in Disease (eds Karmazyn, N., Avkiran, M. & Fliegel, L.) 279–290 (Kluwer Academic, Boston, Massachusetts, 2003)

    Google Scholar 

  7. 7

    Apse, M. P., Sottosanto, J. B. & Blumwald, E. Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J. 36, 229–239 (2003)

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Qiu, Q. S., Barkla, B. J., Vera-Estrella, R., Zhu, J. K. & Schumaker, K. S. Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol. 132, 1041–1052 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Apse, M. P., Aharon, G. S., Snedden, W. A. & Blumwald, E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256–1258 (1999)

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Krulwich, T. A., Ito, M. & Guffanti, A. A. The Na+-dependence of alkaliphily in Bacillus. Biochim. Biophys. Acta 1505, 158–168 (2001)

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Hase, C. C. & Mekalanos, J. J. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA 96, 3183–3187 (1999)

    ADS  CAS  Article  PubMed  Google Scholar 

  12. 12

    Padan, E., Tzubery, T., Herz, K., Kozachkov, L. & Galili, L. NhaA of Escherichia coli, as a model of a pH regulated Na+/H+ antiporter. Biochim. Biophys. Acta 1658, 2–13 (2004)

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Taglicht, D., Padan, E. & Schuldiner, S. Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant) from Escherichia coli. J. Biol. Chem. 266, 11289–11294 (1991)

    CAS  PubMed  Google Scholar 

  14. 14

    Putney, L. K., Denker, S. P. & Barber, D. L. The changing face of the Na+/H+ exchanger, NHE1: structure, regulation and cellular actions. Annu. Rev. Pharmacol. Toxicol. 42, 527–552 (2002)

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Wakabayashi, S., Pang, T., Hisamitsu, T. & Shigekawa, M. in The Sodium–Hydrogen Exchange, from Molecule to its Role in Disease (eds Karmazyn, N., Avkiran, M. & Fliegel, L.) 35–49 (Kluwer Academic, Boston, Massachusetts, 2003)

    Google Scholar 

  16. 16

    Gerchman, Y., Rimon, A. & Padan, E. A pH-dependent conformational change of NhaA Na+/H+ antiporter of Escherichia coli involves loop VIII–IX, plays a role in the pH response of the protein, and is maintained by the pure protein in dodecyl maltoside. J. Biol. Chem. 274, 24617–24624 (1999)

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Gerchman, Y., Rimon, A., Venturi, M. & Padan, E. Oligomerization of NhaA, the Na+/H+ antiporter of Escherichia coli in the membrane and its functional and structural consequences. Biochemistry 40, 3403–3412 (2001)

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Williams, K. A., Geldmacher-Kaufer, U., Padan, E., Schuldiner, S. & Kuhlbrandt, W. Projection structure of NhaA, a secondary transporter from Escherichia coli, at 4.0 Å resolution. EMBO J. 18, 3558–3563 (1999)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Williams, K. A. Three-dimensional structure of the ion-coupled transport protein NhaA. Nature 403, 112–115 (2000)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Rothman, A., Padan, E. & Schuldiner, S. Topological analysis of NhaA, a Na+/H+ antiporter from Escherichia coli. J. Biol. Chem. 271, 32288–32292 (1996)

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Palsdottir, H. & Hunte, C. Lipids in membrane protein structures. Biochim. Biophys. Acta 1666, 2–18 (2004)

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  24. 24

    Khademi, S. et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 305, 1587–1594 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  25. 25

    von Heijne, G. Membrane protein structure prediction: hydrophobicity analysis and the ‘positive inside’ rule. J. Mol. Biol. 225, 487–494 (1992)

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Glusker, J. P. Structural aspects of metal liganding to functional groups in proteins. Adv. Protein Chem. 42, 1–76 (1991)

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Harding, M. M. The architecture of metal coordination groups in proteins. Acta Crystallogr. D Biol. Crystallogr. 60, 849–859 (2004)

    Article  PubMed  Google Scholar 

  28. 28

    Inoue, H., Noumi, T., Tsuchiya, T. & Kanazawa, H. Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na+/H+ antiporter (NhaA) from Escherichia coli. FEBS Lett. 363, 264–268 (1995)

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Galili, L., Rothman, A., Kozachkov, L., Rimon, A. & Padan, E. Trans membrane domain IV is involved in ion transport activity and pH regulation of the NhaA-Na+/H+ antiporter of Escherichia coli. Biochemistry 41, 609–617 (2002)

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Rimon, A., Tzubery, T., Galili, L. & Padan, E. Proximity of cytoplasmic and periplasmic loops in NhaA Na+/H+ antiporter of Escherichia coli as determined by site-directed thiol cross-linking. Biochemistry 41, 14897–14905 (2002)

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Tzubery, T., Rimon, A. & Padan, E. Mutation E252C increases drastically the Km for Na and causes an alkaline shift of the pH dependence of NhaA Na+/H+ antiporter of Escherichia coli. J. Biol. Chem. 279, 3265–3272 (2004)

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Venturi, M. et al. The monoclonal antibody 1F6 identifies a pH-dependent conformational change in the hydrophilic NH2 terminus of NhaA Na+/H+ antiporter of Escherichia coli. J. Biol. Chem. 275, 4734–4742 (2000)

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Zilberstein, D., Agmon, V., Schuldiner, S. & Padan, E. The sodium/proton antiporter is part of the pH homeostasis mechanism in Escherichia coli. J. Biol. Chem. 257, 3687–3691 (1982)

    CAS  PubMed  Google Scholar 

  34. 34

    Jin, J., Guffanti, A. A., Bechhofer, D. H. & Krulwich, T. A. Tet(L) and tet(K) tetracycline-divalent metal/H+ antiporters: characterization of multiple catalytic modes and a mutagenesis approach to differences in their efflux substrate and coupling ion preferences. J. Bacteriol. 184, 4722–4732 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Jencks, W. P. The utilization of binding energy in coupled vectorial processes. Adv. Enzymol. 51, 75–106 (1980)

    CAS  PubMed  Google Scholar 

  36. 36

    West, I. C. Ligand conduction and the gated-pore mechanism of transmembrane transport. Biochim. Biophys. Acta 1331, 213–234 (1997)

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Taglicht, D., Padan, E. & Schuldiner, S. Proton–sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli. J. Biol. Chem. 268, 5382–5387 (1993)

    CAS  PubMed  Google Scholar 

  38. 38

    Galili, L., Hertz, K., Dym, O. & Padan, E. Unraveling functional and structural interactions between trans membrane domains IV and XI of NhaA Na+/H+ antiporter of Escherichia coli. J. Biol. Chem. 279, 23104–23113 (2004)

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Rimon, A., Gerchman, Y., Kariv, Z. & Padan, E. A point mutation (G338S) and its suppressor mutations affect both the pH response of the NhaA-Na+/H+ antiporter as well as the growth phenotype of Escherichia coli. J. Biol. Chem. 273, 26470–26476 (1998)

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Aronson, P. Kinetic properties of the plasma membrane Na+/H+ exchanger. Annu. Rev. Physiol. 47, 545–560 (1985)

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Wakabayashi, S., Hisamitsu, T., Pang, T. & Shigekawa, M. Kinetic dissection of two distinct proton binding sites in Na+/H+ exchangers by measurement of reverse mode reaction. J. Biol. Chem. 278, 43580–43585 (2003)

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  43. 43

    Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Pebay-Peyroula, E. et al. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426, 39–44 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  45. 45

    Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D. N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616–620 (2003)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Viitanen, P., Garcia, M. L. & Kaback, H. R. Purified reconstituted lac carrier protein from Escherichia coli is fully functional. Proc. Natl Acad. Sci. USA 81, 1629–1633 (1984)

    ADS  CAS  Article  PubMed  Google Scholar 

  47. 47

    Klingenberg, M. in The ADP/ATP Carrier in Mitochondrial Membranes (ed. Martonosi, A. N.) (Plenum, New York, 1985)

    Google Scholar 

  48. 48

    Auer, M. et al. High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter. Biochemistry 40, 6628–6635 (2001)

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Liang, J., Edelsbrunner, H. & Woodward, C. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 7, 1884–1897 (1998)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Kleywegt, G. J. & Jones, T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. D Biol. Crystallogr. 50, 178–185 (1994)

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the beamtime and the assistance of the personnel at beamlines ID29 and ID23 at the European Synchrotron Facility and at PX06 at the Swiss Light Source. This study was supported by grants from the German Israeli Foundation for Scientific Research and Development (to H.M. and E.P.), the Max Planck Society, the Fonds der Chemischen Industrie and the Israel Science Foundation (to E.P.). E.S. was supported by the International Max Planck Research School (IMPResS).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Carola Hunte or Etana Padan or Hartmut Michel.

Ethics declarations

Competing interests

Coordinates have been deposited in the Protein Data Bank under accession code 1ZCD. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Over-expression, purification, crystallization of NhaA; data collection and structure determination. (DOC 40 kb)

Supplementary Table S1

Data collection and refinement statistics for NhaA structure determination. (DOC 33 kb)

Supplementary Figure S1

Organisation of the 12 TMSs of NhaA in two main helical bundles; periplasmic and cytoplasmic view. (PDF 1127 kb)

Supplementary Figure S2

Structural homology between TMS III, IV and V onto TMS X, XI, and XII of NhaA; stereo view of the superimposed elements. (PDF 966 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hunte, C., Screpanti, E., Venturi, M. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005). https://doi.org/10.1038/nature03692

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing