Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor

Abstract

Changes in membrane potential affect ion channels and transporters, which then alter intracellular chemical conditions. Other signalling pathways coupled to membrane potential have been suggested1,2,3 but their underlying mechanisms are unknown. Here we describe a novel protein from the ascidian Ciona intestinalis that has a transmembrane voltage-sensing domain homologous to the S1–S4 segments of voltage-gated channels and a cytoplasmic domain similar to phosphatase and tensin homologue. This protein, named C. intestinalis voltage-sensor-containing phosphatase (Ci-VSP), displays channel-like ‘gating’ currents and directly translates changes in membrane potential into the turnover of phosphoinositides. The activity of the phosphoinositide phosphatase in Ci-VSP is tuned within a physiological range of membrane potential. Immunocytochemical studies show that Ci-VSP is expressed in Ciona sperm tail membranes, indicating a possible role in sperm function or morphology. Our data demonstrate that voltage sensing can function beyond channel proteins and thus more ubiquitously than previously realized.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Transmembrane domain of Ci-VSP operates as a voltage sensor.
Figure 2: Cytoplasmic domain of Ci-VSP is a phosphoinositide phosphatase.
Figure 3: Ci-VSP alters phosphoinositide concentration in a voltage-dependent manner as probed with K + channel activities.
Figure 4: Ci-VSP protein is expressed in sperm tail.

References

  1. 1

    Zhang, C. & Zhou, Z. Ca2+-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nature Neurosci. 5, 425–430 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Zhang, C. et al. Calcium- and dynamin-independent endocytosis in dorsal root ganglion neurons. Neuron 42, 225–236 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Schultz, J. E., Klumpp, S., Benz, R., Schurhoff-Goeters, W. J. & Schmid, A. Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science 255, 600–603 (1992)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Hirokawa, T., Boon-Chieng, S. & Mitaku, S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379 (1998)

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Lee, J. O. et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99, 323–334 (1999)

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Maehama, T., Taylor, G. S. & Dixon, J. E. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu. Rev. Biochem. 70, 247–279 (2001)

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Bezanilla, F. Voltage sensor movements. J. Gen. Physiol. 120, 465–473 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Bezanilla, F., Perozo, E., Papazian, D. M. & Stefani, E. Molecular basis of gating charge immobilization in Shaker potassium channels. Science 254, 679–683 (1991)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. 9

    Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998)

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Taylor, G. S. & Dixon, J. E. PTEN and myotubularins: families of phosphoinositide phosphatases. Methods Enzymol. 366, 43–56 (2003)

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Maehama, T., Taylor, G. S., Slama, J. T. & Dixon, J. E. A sensitive assay for phosphoinositide phosphatases. Anal. Biochem. 279, 248–250 (2000)

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Huang, C. L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Zhang, H. et al. PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37, 963–975 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Zhang, H., He, C., Yan, X., Mirshahi, T. & Logothetis, D. E. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nature Cell Biol. 1, 183–188 (1999)

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Rohacs, T., Chen, J., Prestwich, G. D. & Logothetis, D. E. Distinct specificities of inwardly rectifying K+ channels for phosphoinositides. J. Biol. Chem. 274, 36065–36072 (1999)

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Horn, R. Coupled movements in voltage-gated ion channels. J. Gen. Physiol. 120, 449–453 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000)

    CAS  Article  Google Scholar 

  18. 18

    Campbell, R. B., Liu, F. & Ross, A. H. Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 278, 33617–33620 (2003)

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Iijima, M., Huang, Y. E., Luo, H. R., Vazquez, F. & Devreotes, P. N. Novel mechanism of PTEN regulation by its phosphatidylinositol 4,5-bisphosphate binding motif is critical for chemotaxis. J. Biol. Chem. 279, 16606–16613 (2004)

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Izumi, H., Marian, T., Inaba, K., Oka, Y. & Morisawa, M. Membrane hyperpolarization by sperm-activating and -attracting factor increases cAMP level and activates sperm motility in the ascidian Ciona intestinalis. Dev. Biol. 213, 246–256 (1999)

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Yoshida, M., Murata, M., Inaba, K. & Morisawa, M. A chemoattractant for ascidian spermatozoa is a sulfated steroid. Proc. Natl Acad. Sci. USA 99, 14831–14836 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  22. 22

    Walker, S. M., Downes, C. P. & Leslie, N. R. TPIP: a novel phosphoinositide 3-phosphatase. Biochem. J. 360, 277–283 (2001)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Tapparel, C. et al. The TPTE gene family: cellular expression, subcellular localization and alternative splicing. Gene 323, 189–199 (2003)

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Reymond, A. et al. Human chromosome 21 gene expression atlas in the mouse. Nature 420, 582–586 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  25. 25

    Dong, X. Y. et al. Identification of two novel CT antigens and their capacity to elicit antibody response in hepatocellular carcinoma patients. Br. J. Cancer 89, 291–297 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Dehal, P. et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Goldin, A. L. Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol. 207, 266–279 (1992)

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Taglialatela, M., Toro, L. & Stefani, E. Novel voltage clamp to record small, fast currents from ion channels expressed in Xenopus oocytes. Biophys. J. 61, 78–82 (1992)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Padma, P. et al. Identification of a novel leucine-rich repeat protein as a component of flagellar radial spoke in the ascidian Ciona intestinalis. Mol. Biol. Cell 14, 774–785 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. E. Logothetis for providing IRK1 R228Q plasmid, Y. Kubo for providing wild-type IRK1 plasmid, T. Nukada for G-protein β1 and γ1 subunit plasmids, D. McKinnon and K. Nakajo for KCNQ2/3 plasmids, M. Lazdunski for GIRK2 plasmid, T. Maehama for advice on measuring phosphatase activity, F. Kukita for help in cut-open oocyte recording, J. Cui for discussion, N. Satoh and Y. Satou for help in bioinformatics, and D. McLean for critical reading of the manuscript. This work was supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists to Y.M., Grants-in-Aid for Scientific Research to Y.O. and H.I., and a Grant-in-Aid for Creative Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology to Y.O.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasushi Okamura.

Ethics declarations

Competing interests

The full-length cDNA sequence of Ci-VSP is deposited in the DNA Data Bank of Japan (DDBJ) under the accession number AB183035. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

This figure illustrates coupling of voltage sensor and phosphatase revealed by mutated IRK1 channel and KCNQ2/3 channel. (DOC 180 kb)

Supplementary Figure S2

This illustrates effect of deletion of a linker region between voltage sensor and phosphatase domain of Ci-VSP. (DOC 142 kb)

Supplementary Figure S3

This illustrates specificity of antibodies for Ci-VSP. (DOC 231 kb)

Supplementary Method

This describes cloning of Ci-VSP cDNA, mutagenesis of Ci-VSP cDNA, Q-V plot of asymmetrical charge movements, biotinylation labeling of Ci-VSP protein in Xenopus oocyte, imunoblot analysis, in vitro phosphatase assay, RT-PCR detection of Ci-VSP transcript in Ciona intestinalis, and immunoelectron microscopy. (DOC 59 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murata, Y., Iwasaki, H., Sasaki, M. et al. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005). https://doi.org/10.1038/nature03650

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing