Letter | Published:

The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars

Abstract

Some heavy elements (with atomic number A > 69) are produced by the ‘rapid’ (r)-process of nucleosynthesis, where lighter elements are bombarded with a massive flux of neutrons1,2,3,4,5,6,7,8. Although this is characteristic of supernovae and neutron star mergers, uncertainties in where the r-process occurs persist because stellar models are too crude to allow precise quantification of this phenomenon. As a result, there are many uncertainties and assumptions in the models used to calculate the production ratios of actinides (like uranium-238 and thorium-232). Current estimates of the U/Th production ratio range from 0.4 to 0.7. Here I show that the U/Th abundance ratio in meteorites9 can be used, in conjunction with observations of low-metallicity stars in the halo of the Milky Way10,11,12, to determine the U/Th production ratio very precisely . This value can be used in future studies to constrain the possible nuclear mass formulae used in r-process calculations5,6, to help determine the source of Galactic cosmic rays, and to date circumstellar grains5. I also estimate the age of the Milky Way ( in a way that is independent of the uncertainties associated with fluctuations in the microwave background13 or models of stellar evolution14,15.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957)

  2. 2

    Cowan, J. J., Thielemann, F.-K. & Truran, J. W. Radioactive dating of the elements. Annu. Rev. Astron. Astrophys. 29, 447–497 (1991)

  3. 3

    Pfeiffer, B., Kratz, K.-L. & Thielemann, F.-K. Analysis of the solar-system r-process abundance pattern with the new ETFSI-Q mass formula. Z. Phys. A 357, 235–238 (1997)

  4. 4

    Meyer, B. S. & Truran, J. W. Nucleocosmochronology. Phys. Rep. 333–334, 1–11 (2000)

  5. 5

    Goriely, S. & Arnould, M. Actinides: How well do we know their stellar production? Astron. Astrophys. 379, 1113–1122 (2001)

  6. 6

    Schatz, H. et al. Thorium and uranium chronometers applied to CS 31082–001. Astrophys. J. 579, 626–638 (2002)

  7. 7

    Wanajo, S., Itoh, N., Ishimaru, Y., Nozawa, S. & Beers, T. C. The r-process in the neutrino winds of core-collapse supernovae and U-Th cosmochronology. Astrophys. J. 577, 853–865 (2002)

  8. 8

    Otsuki, K., Mathews, G. J. & Kajino, T. r-Process abundance universality and actinide cosmochronology. N. Astron. 8, 767–776 (2003)

  9. 9

    Chen, J. H., Wasserburg, G. J. & Papanastassiou, D. A. Th and U abundances in chondritic meteorites. Lunar Planet. Sci. XXIV, 277–278 (1993)

  10. 10

    Cayrel, R. et al. Measurement of stellar age from uranium decay. Nature 409, 691–692 (2001)

  11. 11

    Hill, V. et al. First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082–001. Astron. Astrophys. 387, 560–579 (2002)

  12. 12

    Cowan, J. J. et al. The chemical composition and age of the metal-poor halo star BD +17°3248. Astrophys. J. 572, 861–879 (2002)

  13. 13

    Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175–194 (2003)

  14. 14

    Krauss, L. M. & Chaboyer, B. Age estimates of globular clusters in the Milky Way: constraints on cosmology. Science 299, 65–69 (2003)

  15. 15

    Hansen, B. et al. Hubble Space Telescope observations of the white dwarf cooling sequence of M4. Astrophys. J. Suppl. Ser. 155, 551–576 (2004)

  16. 16

    Rutherford, E. Origin of actinium and the age of the Earth. Nature 123, 313–314 (1929)

  17. 17

    Tinsley, B. M. Evolution of the stars and gas in galaxies. Fund. Cosmic Phys. 5, 287–388 (1980)

  18. 18

    Yokoi, K., Takahashi, K. & Arnould, M. The 187Re-187Os chronology and chemical evolution of the Galaxy. Astron. Astrophys. 117, 65–82 (1983)

  19. 19

    Clayton, D. D. Nuclear cosmochronology within analytic models of the chemical evolution of the solar neighbourhood. Mon. Not. R. Astron. Soc. 234, 1–36 (1988)

  20. 20

    Pagel, B. E. J. Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge Univ. Press, Cambridge, 1997)

  21. 21

    Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

  22. 22

    Nordström, B. et al. The Geneva-Copenhagen survey of the solar neighbourhood. Astron. Astrophys. 418, 989–1019 (2004)

  23. 23

    Wakker, B. P. et al. Accretion of low-metallicity gas by the Milky Way. Nature 402, 388–390 (1999)

  24. 24

    Dauphas, N., Rauscher, T., Marty, B. & Reisberg, L. Short-lived p-nuclides in the early solar system and implications on the nucleosynthetic role of X-ray binaries. Nucl. Phys. A 719, 287c–295c (2003)

  25. 25

    Kennicutt, R. C. Jr The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

  26. 26

    Holmberg, J. & Flynn, C. The local density of matter mapped by Hipparcos. Mon. Not. R. Astron. Soc. 313, 209–216 (2000)

  27. 27

    Holmberg, J. & Flynn, C. The local surface density of disc matter mapped by Hipparcos. Mon. Not. R. Astron. Soc. 352, 440–446 (2004)

  28. 28

    Chang, R. X., Hou, J. L., Shu, C. G. & Fu, C. Q. Two-component model for the chemical evolution of the galactic disk. Astron. Astrophys. 350, 38–48 (1999)

  29. 29

    Argast, D., Samland, M., Gerhard, O. E. & Thielemann, F. K. Metal-poor halo stars as tracers of ISM mixing processes during halo formation. Astron. Astrophys. 356, 873–887 (2000)

  30. 30

    Chiappini, C., Matteucci, F., Beers, T. C. & Nomoto, K. The earliest phases of Galaxy formation. Astrophys. J. 515, 226–238 (2000)

Download references

Acknowledgements

I thank J. W. Truran, T. Rauscher, A. M. Davis, J. J. Cowan, R. Cayrel, V. Hill, R. Yokochi, B. Marty and L. Reisberg for discussions, and B. Hansen for communication of the 68% confidence interval for the age of the globular cluster Messier 4.

Author information

Correspondence to Nicolas Dauphas.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The author declares no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Equations S1-S12, Supplementary Figure S1 and Supplementary Table S1 (PDF 184 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Distribution of G-dwarf metallicity normalized to solar composition.
Figure 2: Determinations of the U/Th production ratio and the age of the Milky Way.
Figure 3: Estimations of the 238 U/ 232 Th production ratio in r-process nucleosynthesis.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.