Evidence for magmatic evolution and diversity on Mars from infrared observations

Article metrics

  • An Addendum to this article was published on 11 August 2005


Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Daytime and night-time mosaics of THEMIS thermal images of the summit region of Syrtis Major showing the Nili Patera caldera and surrounding lava plains.
Figure 2: The floor of the Nili Patera caldera seen in a mosaic of THEMIS visual images.
Figure 3: Compositional unit map of Nili Patera and the surrounding lava plains derived from a THEMIS multispectral IR image.
Figure 4: The compositional units of the Nili Patera floor.
Figure 5: Mineral composition and abundance of Nili Patera floor units derived from deconvolution of TES spectra.
Figure 6: Comparison of the spectra of Si-K glass and illite clay with the spectrum of unit A.
Figure 7: Dacite abundance derived from the deconvolution of a THEMIS eight-band multi-spectra IR image of Nili Patera.
Figure 8: THEMIS compositional map of a portion of a crater in Aurora Planum.
Figure 9: The occurrence of quartz-bearing granitoid rocks mapped using THEMIS multi-spectral IR imaging.


  1. 1

    Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E. & Clark, R. N. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. J. Geophys. Res. 105, 9609–9622 (2000)

  2. 2

    Bandfield, J. L., Hamilton, V. E. & Christensen, P. R. A global view of Martian volcanic compositions. Science 287, 1626–1630 (2000)

  3. 3

    Soderblom, L. A. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 557–593 (Univ. Arizona Press, Tucson, 1992)

  4. 4

    Mustard, J. F. & Sunshine, J. M. Seeing through the dust: Martian crustal heterogeneity and links to the SNC meteorites. Science 267, 1623–1626 (1995)

  5. 5

    Christensen, P. R. et al. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300, 2056–2061 (2003)

  6. 6

    Christensen, P. R. et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. J. Geophys. Res. 105, 9623–9642 (2000)

  7. 7

    Christensen, P. R. et al. The Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. 106, 23823–23871 (2001)

  8. 8

    Bandfield, J. L. Global mineral distributions on Mars. J. Geophys. Res. 107, doi:10.1029/2001JE001510 (2002)

  9. 9

    Schaber, G. G. Syrtis Major: A low-relief volcanic shield. J. Geophys. Res. 87, 9852–9866 (1982)

  10. 10

    Smith, D. E. et al. Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001)

  11. 11

    Kieffer, H. H. et al. Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 82, 4249–4292 (1977)

  12. 12

    Mellon, M. T., Jakosky, B. M., Kieffer, H. H. & Christensen, P. R. High resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 148, 437–455 (2000)

  13. 13

    Presley, M. A. & Christensen, P. R. Thermal conductivity measurements of particulate materials, Part II: Results. J. Geophys. Res. 102, 6551–6566 (1997)

  14. 14

    Ruff, S. W. & Christensen, P. R. Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107, doi:10.1029/2001JE001580 (2002)

  15. 15

    Ruff, S. W. & Hamilton, V. E. Mineralogical anomalies in Mars Nili Patera caldera observed with Thermal Emission Spectrometer data. Lunar Planet. Sc. XXXII, abstr. 2186 [CD-ROM] (2001)

  16. 16

    Adams, J. B., Smith, M. O. & Johnson, P. E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. J. Geophys. Res. 91, 8098–8112 (1986)

  17. 17

    Ramsey, M. S. & Christensen, P. R. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. J. Geophys. Res. 103, 577–596 (1998)

  18. 18

    Christensen, P. R. et al. Initial results from the Miniature Thermal Emission Spectrometer experiment at the Spirit landing site at Gusev crater. Science 305, 837–842 (2004)

  19. 19

    Christensen, P. R. et al. Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science 306, 1733–1739 (2004)

  20. 20

    Feely, K. C. & Christensen, P. R. Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks. J. Geophys. Res. 104, 24195–24210 (1999)

  21. 21

    Wyatt, M. B., Hamilton, V. E., McSween, H. Y. Jr, Christensen, P. R. & Taylor, L. A. Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: I. Determination of mineralogy, chemistry, and classification strategies. J. Geophys. Res. 106, 14711–14732 (2001)

  22. 22

    Hamilton, V. E., Wyatt, M. B., McSween, H. Y. Jr & Christensen, P. R. Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: II. Application to martian surface spectra from MGS TES J. Geophys. Res. 106, 14733–14747 (2001)

  23. 23

    Hamilton, V. E., Christensen, P. R., McSween, H. Y. Jr & Bandfield, J. L. Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars. Meteorit. Planet. Sci. 38, 871–885 (2003)

  24. 24

    Rieder, R. et al. Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science 306, 1746–1749 (2004)

  25. 25

    Hamilton, V. E. & Christensen, P. R. Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy. J. Geophys. Res. 105, 9717–9734 (2000)

  26. 26

    McSween, H. Y. Jr, Grove, T. L. & Wyatt, W. B. Constraints on the composition and petrogenesis of the martian crust. J. Geophys. Res. 108, doi:10.1029/2003JE002175 (2003)

  27. 27

    Wyatt, M. B. & McSween, H. Y. Jr Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 417, 263–266 (2002)

  28. 28

    Wyatt, M. B., McSween, H. Y. Jr, Tanaka, K. L. & Head, J. W. III Global geologic context for rock types and surface alteration on Mars. Geology 32, 645–648 (2004)

  29. 29

    Kraft, M. D., Michalski, J. R. & Sharp, T. G. High-silica rock coatings: TES surface-type 2 and weathering in Mars. Lunar Planet. Sci. XXXV, abstr. 1936 [CD-ROM] (2004)

  30. 30

    Ruff, S. W. Spectral evidence for zeolite in the dust on Mars. Icarus 168, 131–143 (2004)

  31. 31

    Michalski, J. R., Kraft, M. D., Sharp, T. G., Williams, L. B. & Christensen, P. R. Mineralogical constraints on the high-silica Martian surface component observed by TES: Clay-rich mineralogy does not sufficiently explain the Acidalia Planitia-type spectra. Icarus (in the press)

  32. 32

    Hoefen, T. et al. Discovery of olivine in the Nili Fossae region of Mars. Science 302, 627–630 (2003)

  33. 33

    Hamilton, V. E. & Christensen, P. R. Detailed mineralogical analyses of Martian meteorite-like terrains using MGS TES and Odyssey THEMIS data. Lunar Planet. Sci. XXXIV, abstr. 1982 [CD-ROM] (2003)

  34. 34

    Hamilton, V. E. & Christensen, P. R. Evidence for extensive olivine-rich bedrock on Mars. Geology (in the press)

  35. 35

    Rogers, A. D., Christensen, P. R. & Bandfield, J. L. Compositional heterogeneity of the ancient martian crust: Analysis of Ares Vallis bedrock the THEMIS and TES data. J. Geophys. Res. (submitted)

  36. 36

    Hamilton, V. E., Christensen, P. R. & McSween, H. Y. Jr Global constraints on the source regions of martian meteorites from MGS TES data. Meteorit. Planet. Sci. 37, 59 (2003)

  37. 37

    McSween, H. Y. Jr et al. Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science 305, 842–845 (2004)

  38. 38

    Morris, R. V. et al. Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit rover. Science 305, 833–836 (2004)

  39. 39

    Gellert, R. et al. Chemistry of rocks and soils at Gusev crater from the Alpha Particle X-ray Spectrometer. Science 305, 829–832 (2004)

  40. 40

    Bandfield, J. L., Hamilton, V. E., Christensen, P. R. & McSween, H. Y. Jr Identification of quartzofeldspathic materials on Mars. J. Geophys. Res. 109, doi:10.1029/2004JE002290 (2004)

  41. 41

    McSween, H. Y. Jr What have we learned about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994)

  42. 42

    McSween, H. Y. Jr The rocks of Mars, from far and near. Meteorit. Planet. Sci. 37, 7–25 (2002)

  43. 43

    Clark, D. B. Granitoid Rocks (Chapman and Hall, New York, 1992)

  44. 44

    Barker, F. in Trondhjemites, Dacites, and Related Rocks (ed. Barker, F.) 1–12 (Elsevier, New York, 1979)

  45. 45

    Smith, M. D., Bandfield, J. L. & Christensen, P. R. Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra: Models and atmospheric properties. J. Geophys. Res. 105, 9589–9608 (2000)

  46. 46

    Bandfield, J. L. & Smith, M. D. Multiple emission angle surface-atmosphere separations of Thermal Emission Spectrometer data. Icarus 161, 47–65 (2003)

  47. 47

    Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L. & Malin, M. C. Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on early Mars. J. Geophys. Res. 106, 23873–23885 (2001)

  48. 48

    Christensen, P. R. et al. A thermal emission spectral library of rock forming minerals. J. Geophys. Res. 105, 9735–9738 (2000)

  49. 49

    Gillespie, A. R. Spectral mixture analysis of multispectral thermal infrared images. Remote Sens. Environ. 42, 137–145 (1992)

Download references


We thank the Odyssey Spacecraft Teams at Lockheed Martin and the Jet Propulsion Laboratory, the THEMIS Operations Team at ASU, led by G. Mehall, the ASU Software Development Team, led by N. Gorelick, and the USGS ISIS Software Development Team, led by J. Torson.

Author information

Correspondence to P. R. Christensen.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Christensen, P., McSween, H., Bandfield, J. et al. Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature 436, 504–509 (2005) doi:10.1038/nature03639

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.