Interchromosomal associations between alternatively expressed loci


The T-helper-cell 1 and 2 (TH1 and TH2) pathways, defined by cytokines interferon-γ (IFN-γ) and interleukin-4 (IL-4), respectively, comprise two alternative CD4+ T-cell fates, with functional consequences for the host immune system. These cytokine genes are encoded on different chromosomes. The recently described TH2 locus control region (LCR) coordinately regulates the TH2 cytokine genes by participating in a complex between the LCR and promoters of the cytokine genes Il4, Il5 and Il13. Although they are spread over 120 kilobases, these elements are closely juxtaposed in the nucleus in a poised chromatin conformation. In addition to these intrachromosomal interactions, we now describe interchromosomal interactions between the promoter region of the IFN-γ gene on chromosome 10 and the regulatory regions of the TH2 cytokine locus on chromosome 11. DNase I hypersensitive sites that comprise the TH2 LCR developmentally regulate these interchromosomal interactions. Furthermore, there seems to be a cell-type-specific dynamic interaction between interacting chromatin partners whereby interchromosomal interactions are apparently lost in favour of intrachromosomal ones upon gene activation. Thus, we provide an example of eukaryotic genes located on separate chromosomes associating physically in the nucleus via interactions that may have a function in coordinating gene expression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spatial organization of the genetic loci used for the 3C analysis.
Figure 2: Interchromosomal, TH2 LCR-regulated interactions.
Figure 3: Intrachromosomal enhancer–promoter interactions in the Ifng gene.
Figure 4: Co-localization of the Ifng and TH2 loci as revealed by FISH.
Figure 5: Deletion of RHS7 hypersensitive site on chromosome 11 affects the expression of Ifng on chromosome 10.


  1. 1

    Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292–301 (2001)

    CAS  Article  Google Scholar 

  2. 2

    Spector, D. L. The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem. 72, 573–608 (2003)

    CAS  Article  Google Scholar 

  3. 3

    Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997)

    CAS  Article  Google Scholar 

  4. 4

    Brown, K. E., Baxter, J., Graf, D., Merkenschlager, M. & Fisher, A. G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell 3, 207–217 (1999)

    CAS  Article  Google Scholar 

  5. 5

    Grogan, J. L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001)

    CAS  Article  Google Scholar 

  6. 6

    Ragoczy, T., Telling, A., Sawado, T., Groudine, M. & Koxak, S. T. A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res. 11, 513–525 (2003)

    CAS  Article  Google Scholar 

  7. 7

    Francastel, C., Walters, M. C., Groudine, M. & Martin, D. I. A functional enhancer suppresses silencing of a transgene and prevents its localization close to centromeric heterochromatin. Cell 99, 259–269 (1999)

    CAS  Article  Google Scholar 

  8. 8

    Schubeler, D. et al. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes Dev. 14, 940–950 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Gerasimova, T. I., Byrd, K. & Corces, V. A chromatin insulator determines the nuclear localization of DNA. Mol. Cell 6, 1025–1035 (2000)

    CAS  Article  Google Scholar 

  10. 10

    Cobb, B. S. et al. Targeting Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev. 14, 2146–2160 (2000)

    CAS  Article  Google Scholar 

  11. 11

    Carmo-Fonseca, M., Platani, M. & Swedlow, J. R. Macromolecular mobility inside the cell nucleus. Trends Cell Biol. 12, 491–495 (2002)

    CAS  Article  Google Scholar 

  12. 12

    Carmo-Fonseca, M. The contribution of nuclear compartmentalization to gene regulation. Cell 108, 513–521 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Mahy, N. L., Perry, P. E., Goilchrist, S., Baldock, R. A. & Bickmore, W. A. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J. Cell Biol. 157, 579–589 (2004)

    Article  Google Scholar 

  15. 15

    Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002)

    ADS  CAS  PubMed  Google Scholar 

  16. 16

    Tolhuis, B., Palstra, R.-J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between Hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465 (2002)

    CAS  Article  Google Scholar 

  17. 17

    Palstra, R.-J. et al. The β-globin nuclear compartment in development and erythroid differentiation. Nature Genet. 35, 190–194 (2003)

    CAS  Article  Google Scholar 

  18. 18

    Spilianakis, C. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nature Immunol. 5, 1017–1027 (2004)

    CAS  Article  Google Scholar 

  19. 19

    Takemoto, N. et al. TH2-specific DNase I-hypersensitive sites in the murine IL-13 and IL-4 intergenic region. Int. Immunol. 10, 1981–1985 (1998)

    CAS  Article  Google Scholar 

  20. 20

    Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998)

    CAS  Article  Google Scholar 

  21. 21

    Loots, G. G. et al. Identification of a coordinate regulator of interleukins-4, 13 and 5 by cross-species sequence comparisons. Science 288, 136–140 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo . Immunity 12, 643–652 (2000)

    CAS  Article  Google Scholar 

  23. 23

    Lee, G. R., Fields, P. E., Griffin, T. J. IV & Flavell, R. A. Regulation of the Th2 cytokine locus by a Locus Control Region. Immunity 19, 145–153 (2003)

    CAS  Article  Google Scholar 

  24. 24

    Fields, P. E., Lee, G. R., Kim, S. T., Bartsevich, V. & Flavell, R. A. Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 21, 865–876 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Lee, D. U., Avni, O., Chen, L. & Rao, A. A distal enhancer in the IFN-γ locus revealed by genome sequence comparison. J. Biol. Chem. 279, 4802–4810 (2004)

    CAS  Article  Google Scholar 

  26. 26

    Shnyreva, M. et al. Evolutionarily conserved sequence elements that positively regulate IFN-γ expression in T cells. Proc. Natl Acad. Sci. USA 101, 12622–12627 (2004)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Lee, G. R., Spilianakis, C. & Flavell, R. A. Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions. Nature Immunol. 6, 42–48 (2005)

    CAS  Article  Google Scholar 

  28. 28

    Eivazova, E. R. & Aune, T. M. Dynamic alterations in the conformation of the Ifng gene region during T helper cell differentiation. Proc. Natl Acad. Sci. USA 101, 251–256 (2004)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Taddei, A., Maison, C., Roche, D. & Almouzni, G. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol. 3, 114–120 (2001)

    CAS  Article  Google Scholar 

  30. 30

    Schmiedeberg, L., Weisshart, K., Diekmann, S., Meyer zu Hoerste, G. & Hemmerich, P. High- and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol. Biol. Cell 15, 2819–2833 (2004)

    CAS  Article  Google Scholar 

  31. 31

    Eggenschwiler, J. et al. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith–Wiedemann and Simpson–Golabi–Behmel syndromes. Genes Dev. 11, 3128–3142 (1997)

    CAS  Article  Google Scholar 

  32. 32

    Dong, C. & Flavell, R. A. Cell fate decision: T-helper 1 and 2 subsets in immune responses. Arthritis Res. 2, 179–188 (2000)

    CAS  Article  Google Scholar 

  33. 33

    Guo, L. et al. In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc. Natl Acad. Sci. USA 99, 10623–10628 (2002)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Kosak, S. T. & Groudine, M. Form follows function: the genomic organization of cellular differentiation. Genes Dev. 18, 1371–1384 (2004)

    CAS  Article  Google Scholar 

  35. 35

    Guo, L. et al. In TH2 cells the IL-4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc. Natl Acad. Sci. USA 99, 10623–10628 (2002)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Parada, L. A., Sotiriou, S. & Misteli, T. Spatial genome organization. Exp. Cell Res. 296, 64–70 (2004)

    CAS  Article  Google Scholar 

  37. 37

    Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genet. 34, 287–291 (2003)

    CAS  Article  Google Scholar 

  38. 38

    Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nature Immunol. 3, 643–651 (2002)

    CAS  Article  Google Scholar 

Download references


We thank Wyeth Laboratories for donation of IL-12. We also thank F. Manzo for assistance with manuscript preparation, T. Gerasimova for suggestions with the FISH protocols, and D. Sakkas for use of his fluorescence microscope. We are also grateful to F. G. Grosveld and W. de Laat for originally providing us with detailed protocols and help with establishing the 3C technique. We would like to thank C. Szekely for assistance with graphs. C.S. is supported by a Cancer Research Institute fellowship; M.D.L is partly supported by a Human Frontiers Science Program long-term fellowship; T.T. is supported by a Ruth L. Kirchstein NIH/NRSA/NIA post-doctoral fellowship; R.A.F. is an Investigator of the Howard Hughes Medical Institute.

Author information



Corresponding author

Correspondence to Richard A. Flavell.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

The IFN-γ and TH2 loci are colocalized in the nucleus as detected by two dimensional-fluorescence in situ hybridization (PPT 69 kb)

Supplementary Figure S2

Immuno-DNA FISH experiments reveal that the colocalized signals reside in euchromatin (PPT 902 kb)

Supplementary Figure S3 xm-repla ce_text {title}

Digestion of chromatinized genomic DNA within the nuclei of different cells types. (PPT 79 kb)

Supplementary Figure S4

IFNγ and TH2 loci colocalize in a more loose manner in the T cell nucleus. (PPT 45 kb)

Supplementary Figure Legends

Legends to accompany the above Supplementary Information (DOC 26 kb)

Supplementary Methods

Additional descripton of the methods used in this study, including Chromosome conformation capture analysis. (DOC 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spilianakis, C., Lalioti, M., Town, T. et al. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.