Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses


The demand for ever-increasing density of information storage and speed of manipulation has triggered an intense search for ways to control the magnetization of a medium by means other than magnetic fields1,2,3,4,5. Recent experiments on laser-induced demagnetization6,7,8 and spin reorientation9 use ultrafast lasers as a means to manipulate magnetization, accessing timescales of a picosecond or less. However, in all these cases the observed magnetic excitation is the result of optical absorption followed by a rapid temperature increase. This thermal origin of spin excitation considerably limits potential applications because the repetition frequency is limited by the cooling time10. Here we demonstrate that circularly polarized femtosecond laser pulses can be used to non-thermally excite and coherently control the spin dynamics in magnets by way of the inverse Faraday effect. Such a photomagnetic interaction is instantaneous and is limited in time by the pulse width (200 fs in our experiment). Our finding thus reveals an alternative mechanism of ultrafast coherent spin control, and offers prospects for applications of ultrafast lasers in magnetic devices.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Magnetic excitations in DyFeO 3 probed by the magneto-optical Faraday effect.
Figure 2: Excitation of the spin oscillations in DyFeO 3 measured at different temperatures in the range between 20 K and 170 K.
Figure 3: Temperature dependence of the frequencies of the observed spin oscillations.


  1. Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997)

    ADS  CAS  Article  Google Scholar 

  2. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000)

    ADS  CAS  Article  Google Scholar 

  3. Kato, Y., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2004)

    ADS  CAS  Article  Google Scholar 

  4. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004)

    ADS  CAS  Article  Google Scholar 

  5. Lottermoser, Th. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

    ADS  CAS  Article  Google Scholar 

  6. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996)

    ADS  CAS  Article  Google Scholar 

  7. Hohlfeld, J., Matthias, E., Knorren, R. & Bennemann, K. H. Nonequilibrium magnetization dynamics of nickel. Phys. Rev. Lett. 78, 4861–4864 (1997)

    ADS  CAS  Article  Google Scholar 

  8. Koopmans, B., van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000)

    ADS  CAS  Article  Google Scholar 

  9. Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, Th. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004)

    ADS  CAS  Article  Google Scholar 

  10. Hohlfeld, J. et al. Fast magnetization reversal of GdFeCo induced by femtosecond laser pulses. Phys. Rev. B 65, 012413 (2002)

    ADS  Article  Google Scholar 

  11. Faraday, M. On the magnetization of light and the illumination of magnetic lines of force. Phil. Trans. R. Soc. Lond. 136, 104–123 (1846)

    Google Scholar 

  12. Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)

    Google Scholar 

  13. Pitaevskii, L. P. Electric forces in a transparent dispersive medium. Sov. Phys. JETP 12, 1008–1013 (1961)

    MathSciNet  Google Scholar 

  14. van der Ziel, J. P., Pershan, P. S. & Malmstrom, L. D. Optically-induced magnetization resulting from the inverse Faraday effect. Phys. Rev. Lett. 15, 190–193 (1965)

    ADS  CAS  Article  Google Scholar 

  15. Pershan, P. S., van der Ziel, J. P. & Malmstrom, L. D. Theoretical discussion of inverse Faraday effect, Raman scattering and related phenomena. Phys. Rev. 143, 574–583 (1966)

    ADS  CAS  Article  Google Scholar 

  16. Awschalom, D. D., Warnock, J. & von Molnar, S. Low-temperature magnetic spectroscopy of a dilute magnetic semiconductor. Phys. Rev. Lett. 58, 812–815 (1987)

    ADS  CAS  Article  Google Scholar 

  17. Shen, Y. R. & Bloembergen, N. Interaction between light waves and spin waves. Phys. Rev. 143, 372–384 (1960)

    ADS  Article  Google Scholar 

  18. Gomez-Abal, R., Ney, O., Satitkovitchai, K. & Hübner, W. All-optical subpicosecond magnetic switching in NiO(001). Phys. Rev. Lett. 92, 227402 (2004)

    ADS  CAS  Article  Google Scholar 

  19. Wijn, H. P. J. (ed.) Numerical Data and Functional Relationships. In Landolt-Börnstein New Series Group III, Vol. 27, f3, 125–134 (Springer, Berlin, 1981)

  20. Dzyaloshinskii, I. E. Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957)

    MATH  Google Scholar 

  21. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    ADS  CAS  Article  Google Scholar 

  22. Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials (IOP, Bristol, 1997)

    Google Scholar 

  23. White, R. M., Nemanich, R. J. & Herring, C. Light scattering from magnetic excitations in orthoferrites. Phys. Rev. B 25, 1822–1836 (1982)

    ADS  CAS  Article  Google Scholar 

  24. Balbashov, A. M., Volkov, A. A., Lebedev, S. P., Mukhin, A. A. & Prokhorov, A. S. High-frequency magnetic properties of dysprosium orthoferrite. Sov. Phys. JETP 61, 573–586 (1985)

    Google Scholar 

  25. Koshizuka, N. & Hayashi, K. Raman scattering from magnon excitations in RFeO3 . J. Phys. Soc. Jpn 57, 4418–4428 (1988)

    ADS  CAS  Article  Google Scholar 

  26. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003)

    ADS  CAS  Article  Google Scholar 

Download references


We thank V. N. Gridnev for discussions, and T. Toonen and A. van Etteger for help with measurements. This work was partially supported by the European IST network SPINOSA, the RTN network DYNAMICS, the Russian Foundation for Basic Research (RFBR), de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), and de Stichting voor Fundamenteel Onderzoek der Materie (FOM).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Th. Rasing.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kimel, A., Kirilyuk, A., Usachev, P. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing