Increased productivity in the subantarctic ocean during Heinrich events

Abstract

Massive iceberg discharges from the Northern Hemisphere ice sheets, ‘Heinrich events’, coincided with the coldest periods of the last ice age1. There is widespread evidence for Heinrich events and their profound impact on the climate and circulation of the North Atlantic Ocean, but their influence beyond that region remains uncertain1. Here we use a combination of molecular fingerprints of algal productivity and radioisotope tracers of sedimentation to document eight periods of increased productivity in the subpolar Southern Ocean during the past 70,000 years that occurred within 1,000–2,000 years of a Northern Hemisphere Heinrich event. We discuss possible causes for such a link, including increased supply of iron from upwelling and increased stratification during the growing season, which imply an alteration of the global ocean circulation during Heinrich events. The mechanisms linking North Atlantic iceberg discharges with subantarctic productivity remain unclear at this point. We suggest that understanding how the Southern Ocean was altered during these extreme climate perturbations is critical to understanding the role of the ocean in climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Subantarctic productivity changes during Heinrich events.

References

  1. 1

    Hemming, S. R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, doi:10.1029/2003RG000128 (2004)

  2. 2

    Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976)

    ADS  CAS  Article  Google Scholar 

  3. 3

    van Kreveld, S. et al. Potential links between surging ice sheets, circulation changes, and the Dansgaard–Oeschger cycles in the Irminger Sea, 60–18 kyr. Paleoceanography 15, 425–442 (2000)

    ADS  Article  Google Scholar 

  4. 4

    Rashid, H., Hesse, R. & Piper, D. J. W. Evidence for an additional Heinrich event between H5 and H6. Paleoceanography 18, 1077, doi:10.1029/2003PA000913 (2003)

    ADS  Article  Google Scholar 

  5. 5

    Arz, H. W., Pätzold, J. & Wefer, G. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quat. Res. 50, 157–166 (1998)

    CAS  Article  Google Scholar 

  6. 6

    Little, M. G. et al. Trade wind forcing of upwelling, seasonality, and Heinrich events as a response to sub-Milankovitch climate variability. Paleoceanography 12, 568–576 (1997)

    ADS  Article  Google Scholar 

  7. 7

    McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Rind, D. et al. Effects of meltwater in the GISS coupled atmosphere–ocean model 2. A bipolar seesaw in Atlantic Deep Water production. J. Geophys. Res. 106, 27355–27365 (2001)

    ADS  Article  Google Scholar 

  9. 9

    Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Piotrowski, A. M., Goldstein, S. L., Hemming, S. R. & Fairbanks, R. G. Intensification and variability of ocean thermohaline circulation through the last deglaciation. Earth Planet. Sci. Lett. 225, 205–220 (2004)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Nilsson, J., Brostrom, G. & Walin, G. The thermohaline circulation and vertical mixing: Does weaker density stratification give stronger overturning? J. Phys. Oceanogr. 33, 2781–2795 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12

    Webb, D. J. & Suginohara, N. Vertical mixing in the ocean. Nature 409, 37 (2001)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Volkman, J. K. et al. Microalgal biomarkers: A review of recent research developments. Org. Geochem. 29, 1163–1179 (1998)

    CAS  Article  Google Scholar 

  15. 15

    Weaver, P. P. E., Carter, L. & Neil, H. L. Response of surface water masses and circulation to late Quaternary climate change east of New Zealand. Paleoceanography 13, 70–83 (1998)

    ADS  Article  Google Scholar 

  16. 16

    Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-year centennial-scale marine record of Southern Hemisphere climatic oscillation. Science 301, 948–952 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Sachs, J. P., Anderson, R. F. & Lehman, S. J. Glacial surface temperatures of the southeast Atlantic Ocean. Science 293, 2077–2079 (2001)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Sachs, J. P. & Anderson, R. F. Fidelity of alkenone paleotemperature reconstructions in southern Cape basin sediment drifts. Paleoceanography 18, 1082, doi:10.1029/2002PA000862 (2003)

    ADS  Article  Google Scholar 

  19. 19

    Chase, Z., Anderson, R. F. & Fleisher, M. Q. Evidence from authigenic uranium for increased productivity of the glacial Subantarctic Ocean. Paleoceanography 16, 468–478 (2001)

    ADS  Article  Google Scholar 

  20. 20

    Martin, J. H. Glacial–interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990)

    ADS  Article  Google Scholar 

  21. 21

    Boyd, P., LaRoche, J., Gall, M., Frew, R. & McKay, R. M. L. Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New Zealand. J. Geophys. Res. 104, 13395–13408 (1999)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Watson, A. J. & Lefevre, N. The sensitivity of atmospheric CO2 concentrations to input of iron to the oceans. Tellus 51B, 453–460 (1999)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Lefevre, N. & Watson, A. J. Modeling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations. Glob. Biogeochem. Cycles 13, 727–736 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Steig, E. J. et al. Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geogr. Ann. 82A, 213–235 (2000)

    Article  Google Scholar 

  25. 25

    Abbott, M. R., Richman, J. G., Lettelier, R. M. & Bartlett, J. S. The spring bloom in the Antarctic Polar Frontal Zone as observed from a mesoscale array of bio-optical sensors. Deep-Sea Res. II 47, 3285–3314 (2000)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Mitchell, B. G., Brody, E. A., Holm-Hansen, O., McClain, C. & Bishop, J. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol. Oceanogr. 36, 1662–1677 (1991)

    ADS  Article  Google Scholar 

  27. 27

    Smith, W. O. Jr & Nelson, D. M. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227, 163–167 (1985)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Rohling, E. J., Marsh, R., Wells, N. C., Siddall, M. & Edwards, N. R. Similar meltwater contributions to glacial sea level changes from Antarctic and northern ice sheets. Nature 430, 1016–1021 (2004)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Indermühle, A., Monnin, E., Stauffer, B., Stocker, T. F. & Wahlen, M. Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophys. Res. Lett. 27, 735–738 (2000)

    ADS  Article  Google Scholar 

  30. 30

    Stoner, J. S., Channell, J. E. T., Hillaire-Marcel, C. & Kissel, C. Geomagnetic paleointensity and environmental record from Labrador Sea core MD95–2024: global marine sediment and ice core chronostratigraphy for the last 110 kyr. Earth Planet. Sci. Lett. 183, 161–177 (2000)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Discussions with C. Wunsch, J. Marshall, M. Follows, E. Boyle and P. Parekh contributed to this manuscript. Samples from core MD97-2120 were provided by K. Pahnke and R. Zahn. The Lamont-Doherty Earth Observatory core repository provided samples from core TN057-21-PC2. D. Dryer, M. Fleisher, Y. Chang and M. Bryan assisted with laboratory analyses. Funding for J.P.S. was from the Gary Comer Foundation, the Jeptha H. and Emily V. Wade Award for Research, and a Henry L. and Grace Doherty Professorship. Funding for R.F.A. was from a grants/cooperative agreement from the National Oceanic and Atmospheric Administration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julian P. Sachs.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sachs, J., Anderson, R. Increased productivity in the subantarctic ocean during Heinrich events. Nature 434, 1118–1121 (2005). https://doi.org/10.1038/nature03544

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing