Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells

A Retraction to this article was published on 08 July 2010

Abstract

In contrast to activated CD4+ T cells, resting human CD4+ T cells circulating in blood are highly resistant to infection with human immunodeficiency virus (HIV)1,2,3,4. Whether the inability of HIV to infect these resting CD4+ T cells is due to the lack of a key factor, or alternatively reflects the presence of an efficient mechanism for defence against HIV, is not clear. Here we show that the anti-retroviral deoxycytidine deaminase APOBEC3G5 strongly protects unstimulated peripheral blood CD4+ T cells against HIV-1 infection. In activated CD4+ T cells, cytoplasmic APOBEC3G resides in an enzymatically inactive, high-molecular-mass (HMM) ribonucleoprotein complex that converts to an enzymatically active low-molecular-mass (LMM) form after treatment with RNase. In contrast, LMM APOBEC3G predominates in unstimulated CD4+ T cells, where HIV-1 replication is blocked and reverse transcription is impaired1,2,3. Mitogen activation induces the recruitment of LMM APOBEC3G into the HMM complex, and this correlates with a sharp increase in permissivity for HIV infection in these stimulated cells. Notably, when APOBEC3G-specific small interfering RNAs are introduced into unstimulated CD4+ T cells, the early replication block encountered by HIV-1 is greatly relieved. Thus, LMM APOBEC3G functions as a potent post-entry restriction factor for HIV-1 in unstimulated CD4+ T cells. Surprisingly, sequencing of the reverse transcripts slowly formed in unstimulated CD4+ T cells reveals only low levels of dG → dA hypermutation, raising the possibility that the APOBEC3G-restricting activity may not be strictly dependent on deoxycytidine deamination.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: APOBEC3G is negatively regulated by recruitment into an enzymatically inactive HMM complex.
Figure 2: Vif assembles with APOBEC3G in HMM complexes and promotes polyubiquitination of APOBEC3G.
Figure 3: Inducibility of HMM APOBEC3G complex formation in primary CD4+ T cells with different stimuli, and correlation of the HMM complex with permissivity for HIV infection.
Figure 4: APOBEC3G is a post-entry restriction factor for HIV in unstimulated CD4+ T cells.
Figure 5: LMM APOBEC3G impairs the accumulation of late HIV-1 reverse transcription products in unstimulated CD4+ T cells.

References

  1. Zack, J. A. et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213–222 (1990)

    CAS  Article  PubMed  Google Scholar 

  2. Korin, Y. D. & Zack, J. A. Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J. Virol. 72, 3161–3168 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pierson, T. C. et al. Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J. Virol. 76, 8518–8531 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Stevenson, M., Stanwick, T. L., Dempsey, M. P. & Lamonica, C. A. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 9, 1551–1560 (1990)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  6. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002)

    CAS  Article  PubMed  Google Scholar 

  7. Harris, R. S., Petersen-Mahrt, S. K. & Neuberger, M. S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002)

    CAS  Article  PubMed  Google Scholar 

  8. Harris, R. S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003)

    CAS  Article  PubMed  Google Scholar 

  9. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  10. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A. J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112 (2003)

    CAS  Article  PubMed  Google Scholar 

  11. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W. C. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol. Cell 12, 591–601 (2003)

    CAS  Article  PubMed  Google Scholar 

  13. Marin, M., Rose, K. M., Kozak, S. L. & Kabat, D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nature Med. 9, 1398–1403 (2003)

    CAS  Article  PubMed  Google Scholar 

  14. Sheehy, A. M., Gaddis, N. C. & Malim, M. H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nature Med. 9, 1404–1407 (2003)

    CAS  Article  PubMed  Google Scholar 

  15. Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003)

    CAS  Article  PubMed  Google Scholar 

  16. Anant, S. & Davidson, N. O. Molecular mechanisms of apolipoprotein B mRNA editing. Curr. Opin. Lipidol. 12, 159–165 (2001)

    CAS  Article  PubMed  Google Scholar 

  17. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000)

    CAS  Article  PubMed  Google Scholar 

  18. Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  20. Triques, K. & Stevenson, M. Characterization of restrictions to human immunodeficiency virus type 1 infection of monocytes. J. Virol. 78, 5523–5527 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Eckstein, D. A. et al. HIV-1 actively replicates in naive CD4(+ ) T cells residing within human lymphoid tissues. Immunity 15, 671–682 (2001)

    CAS  Article  PubMed  Google Scholar 

  22. Newman, E. N. et al. Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr. Biol. 15, 166–170 (2005)

    CAS  Article  PubMed  Google Scholar 

  23. Turelli, P., Mangeat, B., Jost, S., Vianin, S. & Trono, D. Inhibition of hepatitis B virus replication by APOBEC3G. Science 303, 1829 (2004)

    Article  PubMed  Google Scholar 

  24. Bishop, K. N. et al. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr. Biol. 14, 1392–1396 (2004)

    CAS  Article  PubMed  Google Scholar 

  25. Liddament, M. T., Brown, W. L., Schumacher, A. J. & Harris, R. S. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo . Curr. Biol. 14, 1385–1391 (2004)

    CAS  Article  PubMed  Google Scholar 

  26. Wiegand, H. L., Doehle, B. P., Bogerd, H. P. & Cullen, B. R. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J. 23, 2451–2458 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Zheng, Y. H. et al. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J. Virol. 78, 6073–6076 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  29. Ganesh, L. et al. The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426, 853–857 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  30. Camaur, D. & Trono, D. Characterization of human immunodeficiency virus type 1 Vif particle incorporation. J. Virol. 70, 6106–6111 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Strebel for the gift of the pNL-A1 plasmid, X.-F. Yu for the gift of the Myc-Cul5 plasmid, D. Bohmann for the gift of the His6-tagged ubiquitin expression vector DNA, N. R. Landau for the gift of NL4-3 HSA R-E- reporter provirus through the AIDS Research and Reference Reagent Program at NIH, J. Burns for the gift of expression plasmid pVSV-G, and M. Malim for providing the monoclonal anti-Vif (319) antibody. We thank A. O'Mahony and H. Kwon for assistance with the FPLC experiments; J. Neidleman for assistance preparing the primary cells; M. Cavrois, D. Fenard, A. Yonezawa, J. Bohuslav, L.-F. Chen, C. Martin and S. Williams for discussions; G. Howard and S. Ordway for editorial assistance; and S. Cammack, R. Givens and J. Carroll for assistance in preparation of the manuscript and the graphics. Different components of this work were supported by funding from the National Institutes of Health (Women's HIV Interdisciplinary Network and NIMH; W.C.G.) and the Universitywide AIDS Research Program (W.C.G.) and the American Foundation for AIDS Research (Y.-L.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warner C. Greene.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

Enzymatic activity of RNase removes RNA molecules associated with the HMW A3G complexes and promotes the disassembly of these complexes. (PDF 46 kb)

Supplementary Figure S2

Vif recruits Cul5 and elongin B, components of an ECS (elongin B-Cul5-SOCS) ubiquitin ligase complex to the HMW HA-A3G complex. (PDF 67 kb)

Supplementary Figure 3

Permissiveness of CD4 T-cells to HIV infection before or after stimulation. (PDF 125 kb)

Supplementary Table S1

The primer and probe sets for real-time PCR and sequencing analysis of HIV-1 reverse transcripts. (DOC 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chiu, YL., Soros, V., Kreisberg, J. et al. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435, 108–114 (2005). https://doi.org/10.1038/nature03493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03493

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing