Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Orbital Kondo effect in carbon nanotubes


Progress in the fabrication of nanometre-scale electronic devices is opening new opportunities to uncover deeper aspects of the Kondo effect1—a characteristic phenomenon in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots2,3,4, carbon nanotubes5,6 and individual molecules7,8. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of delocalized electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number9,10. Here we show that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunnelling. When orbital and spin degeneracies are present simultaneously, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU(4) symmetry.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin, orbital and SU(4) Kondo effect in a quantum dot (QD) with an odd number of electrons.
Figure 2: Orbital Kondo effect.
Figure 3: Kondo effect with combined spin and orbital degeneracies (spinorbital Kondo effect).


  1. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993)

    Book  Google Scholar 

  2. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Schmid, J., Weis, J., Eberl, K. & von Klitzing, K. A quantum dot in the limit of strong coupling to reservoirs. Physica B 256–258, 182–185 (1998)

    Article  ADS  Google Scholar 

  5. Nygård, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000)

    Article  ADS  Google Scholar 

  6. Buitelaar, M. R., Bachtold, A., Nussbaumer, T., Iqbal, M. & Schönenberger, C. Multi-wall carbon nanotubes as quantum dots. Phys. Rev. Lett. 88, 156801 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Cox, D. L. & Zawadowski, A. Exotic Kondo effects in metals: magnetic ions in a crystalline electric field and tunnelling centers. Adv. Phys. 47, 599–942 (1998)

    Article  CAS  Google Scholar 

  10. Kolesnychenko, O. Yu., de Kort, R., Katsnelson, M. I., Lichtenstein, A. I. & van Kempen, H. Real-space imaging of an orbital Kondo resonance on the Cr(001) surface. Nature 415, 507–509 (2002)

    Article  CAS  Google Scholar 

  11. Inoshita, T., Shimizu, A., Kuramoto, Y. & Sakaki, H. Correlated electron transport through a quantum dot: the multiple-level effect. Phys. Rev. B 48, 14725–14728 (1993)

    Article  ADS  CAS  Google Scholar 

  12. Borda, L., Zaránd, G., Hofstetter, W., Halperin, B. I. & von Delft, J. SU(4) Fermi liquid state and spin filtering in a double quantum dot system. Phys. Rev. Lett. 90, 026602 (2003)

    Article  ADS  Google Scholar 

  13. Zaránd, G., Brataas, A. & Goldhaber-Gordon, D. Kondo effect and spin filtering in triangular artificial atoms. Solid State Commun. 126, 463–466 (2003)

    Article  ADS  Google Scholar 

  14. López, R. et al. Probing spin and orbital Kondo effects with a mesoscopic interferometer. Preprint available at

  15. Sasaki, S., Amaha, S., Asakawa, N., Eto, M. & Tarucha, S. Enhanced Kondo effect via tuned orbital degeneracy in a spin ½ artificial atom. Phys. Rev. Lett. 93, 017205 (2004)

    Article  ADS  Google Scholar 

  16. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996)

    Google Scholar 

  17. Minot, E., Yaish, Y., Sazonova, V. & McEuen, P. L. Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428, 536–539 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Ajiki, H. & Ando, T. Electronic states of carbon nanotubes. J. Phys. Soc. Jpn. 62, 1255–1266 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Zaric, S. et al. Optical signatures of the Aharonov–Bohm phase in single-walled carbon nanotubes. Science 304, 1129–1131 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Coskun, U. C., Wei, T.-C., Vishveshwara, S., Goldbart, P. M. & Bezryadin, A. h/e magnetic flux modulation of the energy gap in nanotube quantum dots. Science 304, 1132–1134 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Jarillo-Herrero, P. et al. Electronic transport spectroscopy of carbon nanotubes in a magnetic field. Preprint available at

  22. Liang, W., Bockrath, M. & Park, H. Shell filling and exchange coupling in single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002)

    Article  ADS  Google Scholar 

  23. De Franceschi, S. et al. Electron cotunneling in a semiconductor quantum dot. Phys. Rev. Lett. 86, 878–881 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Paaske, J., Rosch, A. & Wölfle, P. Nonequilibrium transport through a Kondo dot in a magnetic field: perturbation theory. Phys. Rev. B 69, 155330 (2004)

    Article  ADS  Google Scholar 

  25. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Costi, T. A. Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys. Phys. Rev. Lett. 85, 1504–1507 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Sasaki, S. et al. Kondo effect in an integer-spin quantum dot. Nature 405, 764–767 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Choi, M.-S., López, R. & Aguado, R. SU(4) Kondo effect in carbon nanotubes. Phys. Rev. Lett. (submitted)

  29. Mann, D., Javey, A., Kong, J., Wang, Q. & Dai, H. J. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541–1544 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Bonet, E., Deshmukh, M. M. & Ralph, D. C. Solving rate equations for electron tunneling via discrete quantum states. Phys. Rev. B 65, 045317 (2002)

    Article  ADS  Google Scholar 

Download references


We thank G. Zaránd, R. Aguado and J. Martinek for discussions. Financial support was obtained from the Japanese Solution Oriented Research for Science and Technology (SORST) program and the Dutch Fundamenteel Onderzoek der Materie (FOM).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pablo Jarillo-Herrero.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

This file contains Supplementary Figure S1, which consists of three panels related to the 'Single particle energy spectrum & G(VG, B) spectroscopy' section of the Supplementary Information. (PDF 106 kb)

Supplementary Figure S2

This file contains Supplementary Figure S2, which details the temperature dependence data for the SU(4) Kondo effect. (PDF 195 kb)

Supplementary Discussion

This file consists of four sections, the orbital degeneracy & Kondo effect; the single particle energy spectrum & G(VG, B) spectroscopy; the temperature dependence; and the fabrication and measurement setup (DOC 41 kb)


Erratum regarding incorrect Supplementary Information uploading to Nature's website for this paper. This correction was made on 31 March 2005. (DOC 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jarillo-Herrero, P., Kong, J., van der Zant, H. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing