Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of random-phase lattice solitons

Abstract

The coherence of waves in periodic systems (lattices) is crucial to their dynamics, as interference effects, such as Bragg reflections, largely determine their propagation. Whereas linear systems allow superposition, nonlinearity introduces a non-trivial interplay between localization effects, coupling between lattice sites, and incoherence. Until recently, all research on solitary waves (solitons) in nonlinear lattices has involved only coherent waves. In such cases, linear dispersion or diffraction of wave packets can be balanced by nonlinear effects, resulting in coherent lattice (or ‘discrete’) solitons1,2; these have been studied in many branches of science3,4,5,6,7,8,9,10,11. However, in most natural systems, waves with only partial coherence are more common, because fluctuations (thermal, quantum or some other) can reduce the correlation length to a distance comparable to the lattice spacing. Such systems should support random-phase lattice solitons displaying distinct features12. Here we report the experimental observation of random-phase lattice solitons, demonstrating their self-trapping and local periodicity in real space, in addition to their multi-peaked power spectrum in momentum space. We discuss the relevance of such solitons to other nonlinear periodic systems in which fluctuating waves propagate, such as atomic systems, plasmas and molecular chains.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental scheme for producing random-phase solitons in an optically induced square lattice.
Figure 2: Experimental images at the input face.
Figure 3: Experimental images at the output face.
Figure 4: An RPLS with a lower incoherence than the RPLS of Figs 2 and 3.

References

  1. Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003)

    ADS  CAS  Article  Google Scholar 

  2. Campbell, D. K., Flach, S. & Kivshar, Yu. S. Localizing energy through nonlinearity and discreteness. Phys. Today 57(1), 43–49 (Jan. 2004)

    ADS  CAS  Article  Google Scholar 

  3. Davydov, A. S. & Kislukha, N. I. Solitary excitation in one-dimensional molecular chains. Phys. Status Solidi B 59, 465–470 (1973)

    ADS  CAS  Article  Google Scholar 

  4. Xie, A., van der Meer, L., Hoff, W. & Austin, R. H. Long-lived amide I vibrational modes in myoglobin. Phys. Rev. Lett. 84, 5435–5438 (2000)

    ADS  CAS  Article  Google Scholar 

  5. Su, W. P., Schieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979)

    ADS  CAS  Article  Google Scholar 

  6. Christodoulides, D. N. & Joseph, R. I. Discrete self focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988)

    ADS  CAS  Article  Google Scholar 

  7. Eisenberg, H. S., Silberberg, Y., Morandotti, R., Boyd, A. R. & Aitchinson, J. S. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998)

    ADS  CAS  Article  Google Scholar 

  8. Sievers, A. J. & Takeno, S. Intrinsic localized modes in anharmonic crystal. Phys. Rev. Lett. 61, 970–973 (1988)

    ADS  CAS  Article  Google Scholar 

  9. Schwartz, U. T., English, L. Q. & Sievers, A. J. Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnet. Phys. Rev. Lett. 83, 223–226 (1999)

    ADS  Article  Google Scholar 

  10. Trombettoni, A. & Smerzi, A. Discrete solitons and breathers with dilute Bose-Einstein condensate. Phys. Rev. Lett. 86, 2353–2356 (2001)

    ADS  CAS  Article  Google Scholar 

  11. Eiermann, B. et al. Bright Bose-Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett. 92, 230401 (2004)

    ADS  CAS  Article  Google Scholar 

  12. Buljan, H. et al. Random phase solitons in nonlinear periodic lattices. Phys. Rev. Lett. 92, 223901 (2004)

    ADS  CAS  Article  Google Scholar 

  13. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders, Philadelphia, 1976)

    MATH  Google Scholar 

  14. Meier, J. et al. Experimental observation of discrete modulation instability. Phys. Rev. Lett. 92, 163902 (2004)

    ADS  CAS  Article  Google Scholar 

  15. Pertsch, T., Dannberg, P., Elflein, W., Brauer, A. & Lederer, F. Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett. 83, 4752–4755 (1999)

    ADS  CAS  Article  Google Scholar 

  16. Morandotti, R., Peschel, U., Aitchison, J. S., Eisenberg, H. S. & Silberberg, Y. Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83, 4756–4759 (1999)

    ADS  CAS  Article  Google Scholar 

  17. Frisch, U. Turbulence (Cambridge Univ. Press, Cambridge, UK, 1995)

    Book  Google Scholar 

  18. Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically-induced photonic lattices. Phys. Rev. E 66, 046602 (2002)

    ADS  Article  Google Scholar 

  19. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003)

    ADS  CAS  Article  Google Scholar 

  20. Fleischer, J. W., Carmon, T., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of discrete solitons in optically-induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003)

    ADS  Article  Google Scholar 

  21. Fleischer, J. W. et al. Observation of vortex ring “discrete” solitons in 2D photonic lattices. Phys. Rev. Lett. 92, 123904 (2004)

    ADS  Article  Google Scholar 

  22. Neshev, D. N. et al. Observation of discrete vortex solitons in optically-induced photonic lattices. Phys. Rev. Lett. 92, 123903 (2004)

    ADS  Article  Google Scholar 

  23. Neshev, D., Ostrovskaya, E., Kivshar, Yu. S. & Krolikowski, W. Spatial solitons in optically induced gratings. Opt. Lett. 28, 710–712 (2003)

    ADS  Article  Google Scholar 

  24. Martin, H., Eugenieva, E. D., Chen, Z. G. & Christodoulides, D. N. Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices. Phys. Rev. Lett. 92, 123902 (2004)

    ADS  Article  Google Scholar 

  25. Segev, M., Valley, G. C., Crosignani, B., Diporto, P. & Yariv, A. Steady state spatial screening-soliton in photorefractive media with external applied field. Phys. Rev. Lett. 73, 3211–3214 (1994)

    ADS  CAS  Article  Google Scholar 

  26. Christodoulides, D. N. & Carvalho, M. I. Bright, dark and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12, 1628–1633 (1995)

    ADS  CAS  Article  Google Scholar 

  27. Mitchell, M., Chen, Z., Shih, M. & Segev, M. Self-trapping of partially spatially-incoherent light. Phys. Rev. Lett. 77, 490–493 (1996)

    ADS  CAS  Article  Google Scholar 

  28. Goodman, J. Statistical Optics (Wiley & Sons, New York, 1985)

    Google Scholar 

  29. Mitchell, M. & Segev, M. Self-trapping of incoherent white light. Nature 387, 880–883 (1997)

    ADS  CAS  Article  Google Scholar 

  30. Fermi, E., Pasta, J. & Ulam, S. Report LA-1940 (LANL, Los Alamos, 1955)

Download references

Acknowledgements

This work was supported by the Israeli Science Foundation, the Israel–USA Binational Science Foundation, and by the German-Israeli DIP Project. O.C. acknowledges the generous support of the Israeli Ministry of Science through the Eshkol Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mordechai Segev.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cohen, O., Bartal, G., Buljan, H. et al. Observation of random-phase lattice solitons. Nature 433, 500–503 (2005). https://doi.org/10.1038/nature03267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03267

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing