Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong polarization enhancement in asymmetric three-component ferroelectric superlattices

An Addendum to this article was published on 07 April 2005

Abstract

Theoretical predictions—motivated by recent advances in epitaxial engineering—indicate a wealth of complex behaviour arising in superlattices of perovskite-type metal oxides. These include the enhancement of polarization by strain1,2 and the possibility of asymmetric properties in three-component superlattices3. Here we fabricate superlattices consisting of barium titanate (BaTiO3), strontium titanate (SrTiO3) and calcium titanate (CaTiO3) with atomic-scale control by high-pressure pulsed laser deposition on conducting, atomically flat strontium ruthenate (SrRuO3) layers. The strain in BaTiO3 layers is fully maintained as long as the BaTiO3 thickness does not exceed the combined thicknesses of the CaTiO3 and SrTiO3 layers. By preserving full strain and combining heterointerfacial couplings, we find an overall 50% enhancement of the superlattice global polarization with respect to similarly grown pure BaTiO3, despite the fact that half the layers in the superlattice are nominally non-ferroelectric. We further show that even superlattices containing only single-unit-cell layers of BaTiO3 in a paraelectric matrix remain ferroelectric. Our data reveal that the specific interface structure and local asymmetries play an unexpected role in the polarization enhancement.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Atomic-scale flatness and compositional abruptness in surfaces and interfaces of conducting SrRuO3 and artificial superlattices.
Figure 2: Strain states of a BaTiO3 single film and superlattices on SrRuO3/SrTiO3 substrates and their ferroelectric properties.
Figure 3: Evolution of the in-plane strain with changes in the thickness of BaTiO3 layers for fixed thickness of SrTiO3 and CaTiO3.
Figure 4: Polarization enhancement, changes in asymmetry, and evolution of strain in TCS structures.

References

  1. Neaton, J. B. & Rabe, K. M. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 82, 1586–1588 (2003)

    ADS  CAS  Article  Google Scholar 

  2. Pertsev, N. A., Tagantsev, A. K. & Setter, N. Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B 61, R825–R829 (2000)

    ADS  CAS  Article  Google Scholar 

  3. Sai, N., Meyer, B. & Vanderbilt, D. Compositional inversion symmetry breaking in ferroelectric perovskites. Phys. Rev. Lett. 84, 5636–5639 (2000)

    ADS  CAS  Article  Google Scholar 

  4. Kawasaki, M. et al. Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994)

    ADS  CAS  Article  Google Scholar 

  5. Schlom, D. G. et al. Oxide nano-engineering using MBE. Mater. Sci. Eng. B 87, 282–291 (2001)

    Article  Google Scholar 

  6. Yamada, H. et al. Engineered interface of magnetic oxides. Science 305, 646–648 (2004)

    ADS  CAS  Article  Google Scholar 

  7. Lee, H. N., Christen, H. M., Chisholm, M. F., Rouleau, C. M. & Lowndes, D. H. Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure. Appl. Phys. Lett. 84, 4107–4109 (2004)

    ADS  CAS  Article  Google Scholar 

  8. Okamoto, S. & Millis, A. J. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428, 630–633 (2004)

    ADS  CAS  Article  Google Scholar 

  9. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003)

    ADS  CAS  Article  Google Scholar 

  10. Glinchuk, M. D. & Morozovska, A. N. The internal electric field originating from the mismatch effect and its influence on ferroelectric thin film properties. J. Phys. Condens. Matter 16, 3517–3531 (2004)

    ADS  CAS  Article  Google Scholar 

  11. Warusawithana, M. P., Colla, E. V., Eckstein, J. N. & Weissman, M. B. Artificial dielectric superlattices with broken inversion symmetry. Phys. Rev. Lett. 90, 36802 (2003)

    ADS  Article  Google Scholar 

  12. Lee, H. N., Hesse, D., Zakharov, N. & Gösele, U. Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrates. Science 296, 2006–2009 (2002)

    ADS  CAS  Article  Google Scholar 

  13. Christen, H. M. et al. An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas. Rev. Sci. Instrum. 74, 4058–4062 (2003)

    ADS  CAS  Article  Google Scholar 

  14. Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004)

    ADS  CAS  Article  Google Scholar 

  15. Norton, D. P. Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater. Sci. Eng. R 43, 139–247 (2004)

    Article  Google Scholar 

  16. Tabata, H., Tanaka, H. & Kawai, T. Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Appl. Phys. Lett. 65, 1970–1972 (1994)

    ADS  CAS  Article  Google Scholar 

  17. O'Neill, D., Bowman, R. M. & Gregg, J. M. Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Appl. Phys. Lett. 77, 1520–1522 (2000)

    ADS  CAS  Article  Google Scholar 

  18. Shimuta, T. et al. Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with asymmetric structure. J. Appl. Phys. 91, 2290–2294 (2002)

    ADS  CAS  Article  Google Scholar 

  19. Kim, J. et al. Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 80, 3581–3583 (2002)

    ADS  CAS  Article  Google Scholar 

  20. Ogawa, Y. et al. Nonlinear magneto-optical Kerr rotation of an oxide superlattice with artificially broken symmetry. Phys. Rev. Lett. 90, 217403 (2003)

    ADS  CAS  Article  Google Scholar 

  21. Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 . Nature 430, 657–661 (2004)

    ADS  CAS  Article  Google Scholar 

  22. Lee, H. N. et al. Compositionally asymmetric tri-color superlattices grown by pulsed laser deposition. Mater. Res. Soc. Symp. Proc. 784, C3.24 (2004)

    Google Scholar 

  23. Rijnders, G., Blank, D. H. A., Choi, J. & Eom, C. B. Enhanced surface diffusion through termination conversion during epitaxial SrRuO3 growth. Appl. Phys. Lett. 84, 505–507 (2004)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under contract with the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, as part of a BES NSET initiative on Nanoscale Cooperative Phenomena and of the LDRD programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Nyung Lee.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, H., Christen, H., Chisholm, M. et al. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395–399 (2005). https://doi.org/10.1038/nature03261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03261

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing