Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division


RNA interference (RNAi) is an evolutionarily conserved defence mechanism whereby genes are specifically silenced through degradation of messenger RNAs; this process is mediated by homologous double-stranded (ds)RNA molecules1,2,3,4. In invertebrates, long dsRNAs have been used for genome-wide screens and have provided insights into gene functions5,6,7,8. Because long dsRNA triggers a nonspecific interferon response in many vertebrates, short interfering (si)RNA or short hairpin (sh)RNAs must be used for these organisms to ensure specific gene silencing9,10,11. Here we report the generation of a genome-scale library of endoribonuclease-prepared short interfering (esi)RNAs12 from a sequence-verified complementary DNA collection representing 15,497 human genes. We used 5,305 esiRNAs from this library to screen for genes required for cell division in HeLa cells. Using a primary high-throughput cell viability screen followed by a secondary high content videomicroscopy assay, we identified 37 genes required for cell division. These include several splicing factors for which knockdown generates mitotic spindle defects. In addition, a putative nuclear-export terminator was found to speed up cell proliferation and mitotic progression after knockdown. Thus, our study uncovers new aspects of cell division and establishes esiRNA as a versatile approach for genomic RNAi screens in mammalian cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Library generation and screening strategy.
Figure 2: Cell division phenotypes visualized by videomicroscopy.
Figure 3: Spindle and cytokinesis defects observed for RNAi phenotypes.
Figure 4: Efficiency and specificity of esiRNA.


  1. 1

    Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001)

    CAS  Article  Google Scholar 

  4. 4

    Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002)

    CAS  Article  Google Scholar 

  5. 5

    Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002)

    CAS  Article  Google Scholar 

  11. 11

    Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Yang, D. et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 99, 9942–9947 (2002)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Zheng, L. et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 101, 135–140 (2004)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Calegari, F., Haubensak, W., Yang, D., Huttner, W. B. & Buchholz, F. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc. Natl Acad. Sci. USA 99, 14236–14240 (2002)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Kronke, J. et al. Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs. J. Virol. 78, 3436–3446 (2004)

    Article  Google Scholar 

  18. 18

    Henschel, A., Buchholz, F. & Habermann, B. DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. 32, W113–W120 (2004)

    CAS  Article  Google Scholar 

  19. 19

    Liebel, U., Kindler, B. & Pepperkok, R. ‘Harvester’: a fast meta search engine of human protein resources. Bioinformatics 20, 1962–1963 (2004)

    CAS  Article  Google Scholar 

  20. 20

    Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169 (1995)

    CAS  Article  Google Scholar 

  21. 21

    Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001)

    CAS  PubMed  Google Scholar 

  22. 22

    Weis, K. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003)

    CAS  Article  Google Scholar 

  23. 23

    Biggins, S., Bhalla, N., Chang, A., Smith, D. L. & Murray, A. W. Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae. Genetics 159, 453–470 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Burns, C. G. et al. Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest `phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 801–815 (2002)

    MathSciNet  CAS  Article  Google Scholar 

  25. 25

    Prasanth, K. V., Sacco-Bubulya, P. A., Prasanth, S. G. & Spector, D. L. Sequential entry of components of the gene expression machinery into daughter nuclei. Mol. Biol. Cell 14, 1043–1057 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Gruss, O. J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nature Cell Biol. 4, 871–879 (2002)

    CAS  Article  Google Scholar 

  27. 27

    Makarov, E. M. et al. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298, 2205–2208 (2002)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Sherr, C. J. & Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–1163 (1995)

    CAS  Article  Google Scholar 

  29. 29

    Dorsett, Y. & Tuschl, T. siRNAs: applications in functional genomics and potential as therapeutics. Nature Rev. Drug Discov. 3, 318–329 (2004)

    CAS  Article  Google Scholar 

  30. 30

    Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003)

    CAS  Article  Google Scholar 

Download references


We thank F. Stewart, I. Baines, T. Hyman and M. Slabicki for critical reading and comments on the manuscript. We thank K. Weis for helpful discussions. We are grateful to M. Boutros for providing protein accession numbers and sequences of the cell viability screen in Drosophila cells. This study was supported by the Max Planck Society and by the EU-FP6 grant Mitocheck. L.P. is supported by a postdoctoral fellowship from the HFSP.

Author information



Corresponding author

Correspondence to Frank Buchholz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Data, Supplementary Methods, Supplementary Tables 1–3, Supplementary Figure Legends 1–4 and references. (DOC 72 kb)

Supplementary Figure 1

Mitotic indices for 29 genes identified to cause a mitotic arrest. (PDF 349 kb)

Supplementary Figure 2

Nuclear localization and domain structure of KIAA1387. (JPG 169 kb)

Supplementary Figure 3

Effect on cell viability of 26 esiRNAs targeting genes encoding ribosomal proteins. (PDF 287 kb)

Supplementary Figure 4

Sequence analysis of RPS4Y and RPS4X. (PDF 101 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kittler, R., Putz, G., Pelletier, L. et al. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432, 1036–1040 (2004).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing