Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lensless imaging of magnetic nanostructures by X-ray spectro-holography

Abstract

Our knowledge of the structure of matter is largely based on X-ray diffraction studies of periodic structures and the successful transformation (inversion) of the diffraction patterns into real-space atomic maps. But the determination of non-periodic nanoscale structures by X-rays is much more difficult. Inversion of the measured diffuse X-ray intensity patterns suffers from the intrinsic loss of phase information1,2, and direct imaging methods are limited in resolution by the available X-ray optics3. Here we demonstrate a versatile technique for imaging nanostructures, based on the use of resonantly tuned soft X-rays for scattering contrast and the direct Fourier inversion of a holographically formed interference pattern. Our implementation places the sample behind a lithographically manufactured mask with a micrometre-sized sample aperture and a nanometre-sized hole that defines a reference beam. As an example, we have used the resonant X-ray magnetic circular dichroism effect to image the random magnetic domain structure in a Co/Pt multilayer film with a spatial resolution of 50 nm. Our technique, which is a form of Fourier transform holography, is transferable to a wide variety of specimens, appears scalable to diffraction-limited resolution, and is well suited for ultrafast single-shot imaging with coherent X-ray free-electron laser sources4.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Scheme of the experimental set-up.
Figure 2: Hologram recorded with X-rays (right circular polarization) at a wavelength of 1.59 nm.
Figure 3: Images retrieved from the hologram.

References

  1. Stroke, G. W. An Introduction to Coherent Optics and Holography (Academic, New York, 1969)

    Google Scholar 

  2. Miao, J. W., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999)

    ADS  CAS  Article  Google Scholar 

  3. Chao, W. L. et al. 20-nm-resolution soft x-ray microscopy demonstrated by use of multilayer test structures. Opt. Lett. 28, 2019–2021 (2003)

    ADS  CAS  Article  Google Scholar 

  4. Neutze, R., Wouts, R., Van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000)

    ADS  CAS  Article  Google Scholar 

  5. Ade, H. & Hsiao, B. X-ray linear dichroism microscopy. Science 262, 1427–1429 (1993)

    ADS  CAS  Article  Google Scholar 

  6. Stöhr, J. et al. Element-specific magnetic microscopy with circularly polarized X-rays. Science 259, 658–661 (1993)

    ADS  Google Scholar 

  7. Fischer, P. et al. Magnetic domain imaging with a transmission X-ray microscope. J. Magn. Magn. Mater. 199, 624–627 (1999)

    ADS  Article  Google Scholar 

  8. Gerchberg, R. W. & Saxton, W. O. Practical algorithm for determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  9. Fienup, J. R. Phase retrieval algorithms—a comparison. Appl. Opt. 21, 2758–2769 (1982)

    ADS  CAS  Article  Google Scholar 

  10. Gabor, D., Kock, W. E. & Stroke, G. W. Holography. Science 173, 11–23 (1971)

    ADS  CAS  Article  Google Scholar 

  11. Focus on X-ray microscopy. Synchrotron Radiat. News (special issue, ed. Schmahl, G.) 16 (3), 2–63 (2003)

    Google Scholar 

  12. Stöhr, J. et al. Element-specific magnetic microscopy with circularly polarized X-rays. Science 259, 658–661 (1993)

    ADS  Google Scholar 

  13. Xu, W. B., Jericho, M. H., Meinertzhagen, I. A. & Kreuzer, H. J. Digital in-line holography for biological applications. Proc. Natl Acad. Sci. USA 98, 11301–11305 (2001)

    ADS  CAS  Article  Google Scholar 

  14. Trebes, J. E. et al. Demonstration of X-ray holography with an X-ray laser. Science 238, 517–519 (1987)

    ADS  CAS  Article  Google Scholar 

  15. McNulty, I. et al. High-resolution imaging by Fourier-transform X-ray holography. Science 256, 1009–1012 (1992)

    ADS  CAS  Article  Google Scholar 

  16. Lindaas, S., Howells, H., Jacobsen, C. & Kalinovsky, A. X-ray holographic microscopy by means of photoresist recording and atomic-force microscope readout. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 13, 1788–1800 (1996)

    ADS  CAS  Article  Google Scholar 

  17. Hannon, J. P., Trammell, G. T., Blume, M. & Gibbs, D. X-ray resonance exchange scattering. Phys. Rev. Lett. 61, 1245–1248 (1988)

    ADS  CAS  Article  Google Scholar 

  18. Hellwig, O., Denbeaux, G. P., Kortright, J. B. & Fullerton, E. E. X-ray studies of aligned magnetic stripe domains in perpendicular multilayers. Physica B Condens. Matter 336, 136–144 (2003)

    ADS  CAS  Article  Google Scholar 

  19. Kilcoyne, A. L. D. et al. Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. J. Synchrotron Radiat. 10, 125–136 (2003)

    CAS  Article  Google Scholar 

  20. Stroke, G. W. Lensless Fourier-transform method for optical holography. Appl. Phys. Lett. 6, 201–203 (1965)

    ADS  Article  Google Scholar 

  21. Winthrop, J. T. & Worthing, C. R. X-ray microscopy by successive Fourier transformation. Phys. Lett. 15, 124–126 (1965)

    ADS  Article  Google Scholar 

  22. Kortright, J. B. et al. Soft-x-ray small-angle scattering as a sensitive probe of magnetic and charge heterogeneity. Phys. Rev. B 64, 92401 (2001)

    ADS  Article  Google Scholar 

  23. Eisebitt, S. et al. Polarization effects in coherent scattering from magnetic specimen: Implications for x-ray holography, lensless imaging, and correlation spectroscopy. Phys. Rev. B 68, 104419 (2003)

    ADS  Article  Google Scholar 

  24. Bergemann, C., Keymeulen, H. & Van der Veen, J. F. Focusing X-ray beams to nanometer dimensions. Phys. Rev. Lett. 91, 204801 (2003)

    ADS  CAS  Article  Google Scholar 

  25. Fienup, J. R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. 4, 118–123 (1987)

    ADS  Article  Google Scholar 

  26. Cho, A. The ultimate bright idea. Science 296, 1008–1010 (2002)

    CAS  Article  Google Scholar 

  27. Emma, P. et al. Femtosecond and subfemtosecond X-ray pulses from a self-amplified spontaneous-emission–based free-electron laser. Phys. Rev. Lett. 92, 074801 (2004)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Acremann for recording the STXM image of the sample at the Advanced Light Source and E. E. Fullerton for access to his thin film deposition facility. The work of the SSRL authors is supported by the US Department of Energy, Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Eisebitt or J. Lüning.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eisebitt, S., Lüning, J., Schlotter, W. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004). https://doi.org/10.1038/nature03139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03139

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing